
D1.2 Requirements capture for a/c
MDO design

Fanglin Yu (TUM), Muhammad Meddaikar (DLR-AE)
Thiemo Kier, Matthias Wuestenhagen, Simon Binder (DLR-SR)

Béla Takarics (SZTAKI), Charles Poussot-Vassal (ONERA)

GA number: 815058

Project acronym: FLIPASED

Project title: FLIGHT PHASE ADAPTIVE AERO-SERVOELASTIC AIRCRAFT
DESIGN METHODS

Funding Scheme:H2020 ID: MG-3-1-2018

Latest version of Annex I: 1.1 released on 12/04/2019

Start date of project: 01/09/2019 Duration: 40 Months

Lead Beneficiary for this deliverable: TUM

Last modified: 20/02/2021 Status: Delivered

Due date: 30/11/2020

Project co-ordinator name, title and organisation: Bálint Vanek, SZTAKI

Tel: +36 1 279 6113

Fax: +36 1 466 7483

E-mail: vanek@sztaki.hu

Project website address: www.flipased.eu

Dissemination Level
PU Public
CO Confidential, only for members of the consortium (including the Commission Services) X

Ref. Ares(2021)1386395 - 20/02/2021

Glossary

ASE Aeroservoelastic
AFS Active Flutter Suppression
CAD Computer-aided Design
CPACS Common Parametric Aircraft Configuration Schema
DLM Doublet Lattice Method
FE Finite Element
GLA Gust Load Alleviation
LPV Linear Parameter-varying
LPI Linear Time-invariant
MDAx MDAO Workflow Design Accelerator
MDO Multidisciplinary Design Optimization
MIMO Multi-Input Multi-Output
MLA Manoeuvre Load Alleviation
PID Proportional-Integral-Derivative
RCE Remote Component Environment
ROM Reduced Order Model
TCL Tool Command Language
W3C Wold Wide Web Consortium
XDSM Extended Design Structure Matrix
XML Extensible Markup Language
XSD XML Schema Definition

FLIPASED D1.2 Requirements capture for a/c MDO design v01 20/02/2021 2

Table of contents
1 Executive summary . 5

2 Objective functions of toolchain and requirements . 6

3 MDO toolchain . 7

3.1 MDAx . 7

3.2 Functions of blocks . 7

3.2.1 CPACS generation block . 7
3.2.2 Geometry block . 8
3.2.3 FE-model block . 8
3.2.4 Aero-model block . 8
3.2.5 Control oriented modeling . 8
3.2.6 Baseline control design block . 11
3.2.7 Flutter control design block . 12
3.2.8 Closed loop analysis block . 12
3.2.9 Report generation block . 13

3.3 RCE . 13

4 Definition of interfaces . 17

4.1 CPACS . 17

4.2 Interface: CAD model to FE-model of wing . 18

4.3 Interface: CAD model to Aero-model of wing . 19

4.4 Interface: wing FE/aero-model to full aircraft NASTRAN aeroelastic model 19

4.5 Interface: FE-models to structural optimization block 19

4.6 Interface: controllers . 20

4.6.1 Expected closed-loop structure . 20
4.6.2 Input-output data description . 21
4.6.3 Functional task sharing . 22

5 Conclusion . 24

6 Bibliography . 25

FLIPASED D1.2 Requirements capture for a/c MDO design v01 20/02/2021 3

List of Figures
1 MDO workflow in XDSM format with collapsed ”ASE Converger” 7
2 MDO workflow in XDSM format with extended ”ASE Converger” 8
3 ν-gap values between the nominal low order and high-fidelity models. 10
4 Uncertainty of the flutter modes: nominal model (blue), uncertain (red). 11
5 distributed RCE workflow . 14
6 RCE implementation of the Digital-X MDO process . 16
7 CPACS as common interface between disciplines . 18
8 CPACS based aircraft configuration with internal structure as visualized by TiGL 3.0 . . . 18
9 Frequency grid of the physical phenomena occurring over an aircraft. Ranges and values

are different from an aircraft to an other. 20
10 Multiple control loops considered in the WP2. 21
11 Data exchanges within WP2. 21

FLIPASED D1.2 Requirements capture for a/c MDO design v01 20/02/2021 4

1 Executive summary

In order to set up a collaborative design toolchain for an advanced, actively flight condition optimized
wing design, requirements for the MDO toolchain need to be captured first. This deliverable documents
outcomes of activities conducted for the requirement capture and serves as the top-level guideline for
the subsequent MDO implementation.

This deliverable is organized as follows:

Chapter 2 introduces the objectives of the MDO toolchain and derived requirements. Two sorts of
requirements are specified because of the different objectives for demonstrator wing design and com-
mercial transport aircraft wing design. This chapter is contributed by Matthias Wuestenhagen(DLR-SR).

Chapter 3 provides an overview of the MDO toolchain. The MDO toolchain structure is visualized by
MDAx, which is developed by DLR to support the ideation phase of MDO. The functions of individual
blocks are specified. An introduction of the integration framework RCE is given here. This chap-
ter is contributed by Simon Binder(DLR-SR), Fanglin Yu(TUM), Béla Takarics(SZTAKI), and Thiemo
Kier(DLR-SR).

Chapter 4 defines interfaces of connected blocks in MDO toolchain. An introduction to CPACS, which
is agreed by the consortium to serves as the standard interface medium, is also given here. This
chapter is contributed by Thiemo Kier(DLR-SR), Fanglin Yu (TUM), Muhammad Meddaikar(DLR-AE),
and Charles Poussot-Vassal(ONERA).

In chapter 5 a conclusion is given.

FLIPASED D1.2 Requirements capture for a/c MDO design v01 20/02/2021 5

2 Objective functions of toolchain and requirements

It has to be distinguished between the MDO toolchain for the demonstration of technologies and the
scale-up study.

For the demonstration of technologies including gust load alleviation (GLA), manoeuvre load alleviation
(MLA), active flutter suppression and drag reduction through wing shape control the UAV demonstrator
designed for FLEXOP with the flexible, flutter wing (-1) is considered as a starting point. Furthermore,
the fuselage and V-tail of the demonstrator is fixed within the MDO toolchain. This reduces the design
space significantly. The design freedom is limited to wing properties comprising

• the wing planform (sweep, taper ratio, span)

• the spar positions

• the skin stiffness

• the flap positions

• the pre-twist

• the position of the ribs.

The material choice of the wings can be optionally considered as well. The number of flaps per wing
is fixed. However, three different designs with four, eight and sixteen flaps per wing are optimised in
parallel. The focus of the final design is to demonstrate that loads and drag are reduced, while the flutter
speed is increased, when including GLA, MLA, AFS and drag reduction through wing shape control into
the MDO toolchain. Therefore, the objective function is selected to minimise the closed-loop drag DCL,
manoeuvre loads MLCL and gust loads G LCL with respect to the open-loop drag DOL, manoeuvre loads
MLOL and gust loads G LOL. The closed-loop flutter speed F SCL is wanted to be increased relative to
the open-loop flutter speed F SOL. As a result the objective function is given by

J = a(DOL − DCL) + b(F SCL − F SOL) + c(MLOL −MLCL) + d(G LOL − G LCL), (1)

where a, b, c and d represent positive weights to be determined. The overall task is to maximise the
objective function J. As a constraint the open loop flutter speed F SOL is bounded to a maximum of
50m/s and the overall aircraft weight should not exceed 65 kg. After a design solution is found, the new
wings and technology will be built and demonstrated.

The scale-up task, which is supposed to provide an improved commercial aircraft design based on the
technologies demonstrated with the unmanned demonstrator, focuses on a passenger aircraft. Different
from the demonstrator, the wing design is driven by loads in contrast to technology demonstration
purposes. There are two possible objective functions to drive the MDO process. Firstly, maximising the
size - payload can be an objective. Secondly, minimising the block fuel can be an objective as well.
Depending on the objective function the aircraft designs obtained by the MDO process differ. However,
both ways provide an aircraft design with improved fuel consumption.

For the design of the demonstrator as well as for the passenger aircraft, it is required that the MDO
toolchain works automatically. Therefore, the interfaces including the inputs and outputs of each block
needs to be predefined. Another important part is that the given blocks provide the information needed
for the solver to optimise the objective function. For example, when using a gradient-based solver each
block of the MDO toolchain has to provide gradients with respect to the design parameters.

FLIPASED D1.2 Requirements capture for a/c MDO design v01 20/02/2021 6

3 MDO toolchain

3.1 MDAx

Because of the inherent complexity of the multidisciplinary design optimization workflow, the first step
of the development was the discussion and joint elaboration of the process and interfaces between the
various disciplines. The DLR tool MDAx (MDAO Workflow Design Accelerator) was used to digitally
support the ideation phase of the intended optimization workflow [7]. The tool processes XML files
defined by integrators and disciplinary experts for each workflow component and enables the user to
model, inspect and explore the components and their relationships. MDAx automatically establishes
connections between all components with the supplied interface information. These process and data
connections are then inspected to resolve parameter collisions and possible internal feedback connec-
tions that require convergence or optimizers. The tool allows the visualization of the MDO process and
architecture in the form of an extended design structure matrix (XDSM), a diagram that is widely used
by the community. The format simultaneously shows data dependency and process flow between the
involved disciplines on a single diagram and thus allows more effective collaboration and discussion [5].

The current status of the intended workflow at the time of writing this deliverable is shown in Fig 1 in
the form of an XDSM.

Figure 1: MDO workflow in XDSM format with collapsed ”ASE Converger”

The internal converger “ASE Converger” is shown in collapsed view for better readability in Fig 1. The
expanded view is given in Fig 2.

3.2 Functions of blocks

3.2.1 CPACS generation block

CPACS generation block, which is the first block in the MDO toolchain, aims to generate the first version
of CPACS file with a Matlab script. The inputs are all the geometry and structure related parameters,
for instance, airfoil data, wing form, spar location, etc. The output of this block is a CPACS xml file.

FLIPASED D1.2 Requirements capture for a/c MDO design v01 20/02/2021 7

Figure 2: MDO workflow in XDSM format with extended ”ASE Converger”

3.2.2 Geometry block

Geometry block aims to update the Catia model based on the incoming CPACS file from the upstream
CPACS generation block. A Macro script is used to track the parameter variation in CPACS file. The
output of this block is a Catpart file.

3.2.3 FE-model block

The function of the FE-model block is meshing the geometry model and assigning structural properties.
A Splining model, which couples the structural and aerodynamic model, is also generated in this block.
The input of this block is Catpart file. A Nastran bdf file is exported as output.

3.2.4 Aero-model block

The aero-model block takes the geometry definition in CPACS file as input, generates the DLM aerody-
namic model, and exports it to a Nastran bdf file.

3.2.5 Control oriented modeling

Modeling block inputs

The modeling block takes the structural dynamics (Mhh,Khh,Bhh) and aerodynamics data (Qhh) as input
via CPACS.

Modeling block main algorithms

The control oriented models are based on the linear parameter-varying (LPV) framework, [8, 2]. The
LPV framework can serve as a good approach to model aeroservoelastic (ASE) systems for control
design. The benefits of utilizing the LPV framework are the following; it can capture the parameter
varying dynamics of the aircraft and many of the linear time-invariant (LTI) control design techniques
have been extended to LPV systems. An LPV system is described by the state space model [12, 8]

ẋ(t) = A(ρ(t)) x(t) + B(ρ(t)) u(t) (2a)
y(t) = C (ρ(t)) x(t) + D(ρ(t)) u(t) (2b)

FLIPASED D1.2 Requirements capture for a/c MDO design v01 20/02/2021 8

with the continuous matrix functions A : P → Rnx×nx , B : P → Rnx×nu , C : P → Rny×nx , D : P → Rny×nu ,
the state x : R → Rnx , output y : R → Rny input u : R → Rnu , and a time-varying scheduling signal
ρ : R→ P, where P is a compact subset of RN . The system is called quasi LPV model if the parameter
vector ρ includes elements of the state vector x . The system matrix S(ρ(t)) is defined as

S(ρ(t)) =

[
A(ρ(t)) B(ρ(t))
C (ρ(t)) D(ρ(t))

]
(3)

In a grid-based LPV representation ([12]), the system is described as a collection of LTI models (Ak ,
Bk , Ck , Dk) = (A(ρk) ,B(ρk) ,C (ρk) ,D(ρk)) obtained from evaluating the LPV model at a finite number
of parameter values {ρk}

ngrid
1 = Pgrid ⊂ P.

The main milestones of the modeling block are the following. The ASE model is formed by combining
the structural dynamics model, the aerodynamics model and the flight mechanics model. In order to
obtain an ASE model suitable for control design, model order reduction needs to be carried out. The
model order reduction is based on the bottom-up modeling approach, [10, 6, 13].

The key idea of the bottom-up modeling is the following. The subsystems of the ASE model in gen-
eral have simpler structure than the nonlinear ASE model. Therefore, the subsystems containing the
structural dynamics and aerodynamics model can be reduced by simpler, more tractable reduction
techniques. Combining these reduced order subsystems results in a low order nonlinear ASE model
upon which a nominal, low order, control oriented models can be obtained. The main measure of
the accuracy of the low order model is the ν-gap metric, [11]. The control design is using the linear
parameter-varying (LPV) framework, [8, 2]. Therefore grid-based LPV models need to be obtained via
Jacobian linearization.

It is worth noting that rigid body baseline controller design and flexible dynamics control might require
different model setups, since trimming and linearization is sensitive for small deviations in control al-
location matrix and the resulting LTI model might contain unwanted numerically ill-conditioned parts.
For this reason the mathematical model might split into two branches even before linear models are
obtained.

Reduction of the structural dynamics model

The structural dynamics of the aircraft are of the form

Mη̈ + Cη̇ +Kη = Fmodal (4)

where Fmodal is the force acting on the structure in modal coordinates,M, C and K are the modal mass,
damping and stiffness matrices respectively. The structural dynamics model is an LTI system, thus
state truncation can be applied.

Reduction of the aerodynamics model

The aerodynamic lag terms take the state-space form

ẋaero =
2VTAS

c̄
Alagxaero + Blag

ẋrigid
η̇

δ̇cs


yaero = Clagxaero

(5)

where VTAS is the true airspeed, xrigid is the rigid body state, η is the modal state of the structural
dynamics, δcs is the control surface deflection and c̄ is the reference chord. Using the aerodynamics

FLIPASED D1.2 Requirements capture for a/c MDO design v01 20/02/2021 9

model given by Alag, Blag and Clag in (5) an LTI balancing transformation matrix Tb is computed. The
balanced states of the aerodynamic model with the smallest Hankel singular values are residualized,
leading to a reduced order aerodynamics model.

The initial model order reduction produced the following results. The structural dynamics model can be
reduced in the following way. In order to keep the ν-gap between the high fidelity and the low order
model low the first six structural modes and modes 19, 20, 21 are retained for the reference aircraft
model. Te removal of the latter results in a large increase in the ν-gap. This way, a 18 state structural
dynamics model can be obtained from the 100th order model. In case of the aerodynamics model,
retaining two lag states results in a low order model with acceptable accuracy. The resulting nonlinear
ASE bottom-up model has 32 states that consists of 12 rigid body states, 18 structural dynamics states,
2 aerodynamic lag states. Note, that the actuator dynamics are not included in the control oriented
model. The ν-gap between the nominal, high-fidelity and the reduced order model for different airspeed
values is given in Figure 3.

0.01 0.1 1 10 100 1,000
0

0.2

0.4

0.6

0.8

1

frequency [rad/s]

ν
-g

ap

40

45

50

55

60

65

tr
ue

ai
rs

pe
ed

[m
/s

]

Figure 3: ν-gap values between the nominal low order and high-fidelity models.

Uncertain low order model

The next step is to develop uncertain LPV models of the aircraft. Uncertain models can be developed
by extending the structural dynamics model with the uncertain parameters. These uncertainties appear
in the mass matrix K and in the damping matrix C in (4) of the nonlinear ASE model and are denoted
by δK and δC , respectively. Based on this uncertain, nonlinear model a grid-based uncertain LPV model
is constructed. The grid-based uncertain LPV model is obtained over a 3 dimensional grid. The grid
consists of 81 equidistant points of the airspeed between 30 m/s and 70 m/s, 3 points of the natural
frequency in the structural dynamics between ±1% of the nominal value, and 3 points of the damping in
the structural dynamics between ±10% of the nominal value. This results in a total of 81× 3× 3 = 729
grid points. The scheduling parameter ρ can then be defined as

ρ =

ρVTAS

δK
δC

 (6)

where ρVTAS
is a measured parameter and δK and δC are unmeasured. These uncertainties have a

significant effect on the flutter speeds and frequencies. The nominal and uncertain flutter modes of the
control oriented LPV model are shown in Figure 4.

FLIPASED D1.2 Requirements capture for a/c MDO design v01 20/02/2021 10

−4 −2 0 2 4 6 8
40

45

50

55

60

real axis [rad/s]

im
ag

in
ar

y
ax

is
[ra

d/
s]

Figure 4: Uncertainty of the flutter modes: nominal model (blue), uncertain (red).

Modeling block robustness

As it can be seen, the bottom-up modeling approach involves a certain degree of heuristics. These
heuristic steps include the selection of the structural dynamics states to retain and setting the the
number of retained aerodynamic lag states. These parameters are hand tuned for the initial, reference
aircraft model. The modeling tool needs to be adopted to the collaborative design in this respect. This
means that the retained the initial structural modes to be retained are the ones of the reference aircraft.
However, it is crucial that after every MDO iteration, the ν-gap metric is analyzed and that it does not
exceed a threshold value. If this value is exceeded, it means that the bottom up-model is not accurate
enough. Therefore, at the expense of increasing the order ot the resulting model, additional structural
modes need to be retained. The number of retained modes is increased until the ν-gap values are
satisfactory. A similar approach is used for the order of the lag state aerodynamics model. In this case
the number of the retained lag states is increased until a satisfactory ν-gap level is obtained.

Modeling block outputs

The modeling block provides two models, one for the baseline control design (RigACModel) and one
for the flutter control design (FlexACModel). The FlexACModel is the low order, uncertain LPV model
of the aircraft obtained by the steps described above. The RigACModel is obtained from the nominal
low order aircraft model by rezidualizing the structural and lag state dynamics. This model serves for
the baseline control design, containing only the 12 rigid body states. These resulting models are saved
in the ToolSpecific section of CPACS.

3.2.6 Baseline control design block

Baseline control design inputs

The flutter control design takes the actuator dynamics and the baseline control design model RigAC-
Model as inputs via CPACS.

Baseline control design main algorithm

FLIPASED D1.2 Requirements capture for a/c MDO design v01 20/02/2021 11

The baseline control system features a classical cascade flight control structure with scheduled control
loops to augment the lateral and longitudinal axis of the aircraft. As the cross-coupling between lon-
gitudinal and lateral axis is negligible, longitudinal and lateral control design is separated. The control
loops use scheduled elements of proportional-integral-derivative (PID) controller structures with addi-
tional roll-offs in the inner loops to ensure that no aeroelastic mode is excited by the baseline controller.
Scheduling with indicated airspeed Vias is used to ensure an adequate performance over the velocity
range from 30 m/s to 70 m/s.

The baseline control design needs to be augmented with verification/analysis algorithms that ensure
that the resulting controllers after each MDO iteration satisfy the control performance specifications.

Baseline control design outputs

The output of the block is the baseline controller, saved via CPACS.

3.2.7 Flutter control design block

Flutter control design inputs

The flutter control design takes the outer aileron (denoted by L4 and R4) actuator dynamics and the
flutter control design model FlexACModel as inputs via CPACS.

Flutter control design main algorithm

There are two main sub blocks in the flutter control design blocks. First, the design model is split
into longitudinal and lateral. These models are then used to synthesize a stabilizing controller for the
symmetric and asymmetric flutter mode respectively. Second, the control design consists of the con-
struction of two uncertain plants, performance definitions, and the synthesis of two low-order controllers.
These controllers are blended together to obtain the flutter controller. The stability of the resulting flutter
controller and a couple of implementation criteria are also tested.

In case of the flutter suppression control desing, the airspeed and the uncertainties in the structural
dynamics model are treated at parametric uncertainties and dynamic uncertainty is added to account
for the model reduction. In order to reduce the computational time of the control synthesis, structured
H∞ design is chosen that result in an LTI flutter suppression controller. Similarly to the baseline control
design algorithm, the flutter suppression control design block needs to be augmented with basic anal-
ysis algorithms to verify if the resulting controller satisfies the control performance specifications. As a
main measure, the multi-input multi-output (MIMO) disc margins are selected.

Flutter control design outputs

The output of the block is the flutter suppression controller, saved via CPACS.

3.2.8 Closed loop analysis block

Closed loop analysis block inputs

The analysis block requires the baseline, the flutter controllers, the actuator and flexible aircraft dynam-
ics. All the input data is handled via CPACS.

FLIPASED D1.2 Requirements capture for a/c MDO design v01 20/02/2021 12

Closed loop analysis block main algorithm

The open and closed-loop flutter speed are determined by multi-loop input-output margin computations.
The open+loop flutter speed is the speed below which the margins obtained with only the baseline
controller engaged are larger than a predefined threshold. The closed-loop flutter speed is defined
similarly with both the baseline and the flutter controllers engaged.

Closed loop analysis block outputs

The closed loop analysis block provides the symmetric and asymmetric gain margins and the analysis
runtime results as the main indicators for the designed controller’s performance. The data are saved
via CPACS.

Gust-load alleviation block
The function is not implemented yet, but will augment the rigid-body control laws and the flutter control
laws in providing reduced wing root bending moment during the encounter of windgust disturbance.

The control design will utilize the modified aircraft mathematical model, where wing loads will be per-
formance outputs of an optimization based control design framework for disturbance inputs.

Maneuver-load alleviation block
The function is not implemented yet, but will augment the rigid-body control laws and the flutter control
laws in providing reduced wing root bending moment during the pilot commands, especially during
maneuvering phase. The control functionality utilizes feed-forward and feedback terms to shift the
loads on the wing inboards when high G maneuvers are executed at the expense of small drag penalty,
while reducing wing root bending moment.

The control design will utilize the modified aircraft mathematical model, where wing loads will be per-
formance outputs of an optimization based control design framework for disturbance inputs.

Wing shape control block
The function is not implemented yet, but will augment the flexible wing control laws in providing optimal
wing shape for the different phases of flight. The control functionality utilizes feed-forward and feedback
terms to obtain the optimum cruise wing shape at different part of the mission at various parts of the
flight envelope.

The control design will utilize the improved aerodynamics model of the aircraft, since standard ASE dy-
namical models do not account for induced drag terms. For this reason the FLiPASED team is working
on developing low-medium fidelity, 3D panel method based models, including induced drag to provide
a framework to optimise wing shape (mainly first bending and torsion) based on fuel consumption at
different mass cases and velocities.

3.2.9 Report generation block

A pdf report is generated containing key information about the synthesis and analysis: the open and
closed-loop flutter speeds, the robustness margins, the gain of the controller, etc.

3.3 RCE

DLR’s Remote Component Environment (RCE) [3] is an open-source software environment for defining
and executing workflows containing distributed simulation tools by integrating them into a peer-to-peer

FLIPASED D1.2 Requirements capture for a/c MDO design v01 20/02/2021 13

network. The following description has been taken from the related publication by the main developers,
Boden et al. [3]. RCE is being developed primarily by DLR and has been used in various engineering
projects, including several aerospace projects dealing with multidisciplinary optimization (MDO) and
multidisciplinary analysis (MDA). RCE has several advantages that can help to achieve more reusable
multidisciplinary processes. The workflow is composed of built-in and user-defined components. Dis-
ciplinary tools are integrated as standalone components, with defined inputs and outputs, and then
distributed over the network. While executing the workflow, data dependencies between the compo-
nents are automatically detected, and a component is executed as soon as all its input data is available.
Thus, multiple components can run at the same time. The components of a multidisciplinary process
can also be executed in a distributed manner, where the tools are located on different machines with
possibly different operating systems. Once configured, the peer-to-peer network is automatically es-
tablished between the RCE instances running on different machines, making components visible and
executable even between instances that are only connected indirectly. The distributed execution capa-
bility alleviates tool deployment issues, fig. 5, including those related to the protection of intellectual
property.

Figure 5: distributed RCE workflow

RCE supplies a graphical editor for creation of workflows, using the built-in components to control the
data flow. Some built-in components can be used to perform optimization tasks within the workflow,
including nested loops, using built-in or user integrated optimization algorithms. Integrating an external
tool into RCE amounts to defining an interface between RCE and the tool, i.e. defining its inputs and
outputs to make them accessible by RCE, adding pre- and post-processing steps for the input and out-
put data, and defining the commands for the invocation of the tool. In order to aid the user in defining
this integration, RCE features a graphical wizard that guides the user through this process. Once cre-
ated, the integration is defined by a plain text file which can also be edited using standard text editors.
An integrated tool is available locally as a component to be used in workflows and fits seamlessly into

FLIPASED D1.2 Requirements capture for a/c MDO design v01 20/02/2021 14

the user interface. In addition to user-integrated tools, RCE provides a number of predefined tools which
can be used in conjunction with integrated tools to construct complex workflows. These predefined tools
supply a multitude of basic functionalities used in numerous workflows such as handling the flow of data
through the workflow, reading and extracting data from files, manipulating XML, executing user-defined
Python scripts, and evaluating incoming data. Furthermore, there are predefined components that sim-
plify the construction of workflows for multidisciplinary design optimization, such as basic mathematical
and statistical methods. There is also a component that determines absolute or relative convergence
of its input values, and a component that provides access to the optimization algorithms implemented
by the Dakota software library. Moreover, RCE features a component that allows for the exploration
of a parametric design space. This component provides several algorithms for this exploration, among
them a design based on Latin Hypercube sampling or on a Monte Carlo approach. The user, however,
also has the flexibility to specify a custom design. After integrating the tools required for the execution
of the workflow, the user may compose them into a workflow. To this end, RCE offers a graphical editor
allowing the user to construct a workflow by first dragging and dropping the required components into
the editor and subsequently connecting their respective inputs and outputs. After constructing such a
workflow, the user can execute it. RCE has been used in many different MDO/MDA related projects. A
rather involved process flow was implemented in the Digital-X project [4] which is depicted in fig. 6.

The MDO process in Digital-X was a multi-level one, comprising tools and sub-processes ranging from
lowfidelity, over mid-fidelity, to high-fidelity and computation-intensive.

FLIPASED D1.2 Requirements capture for a/c MDO design v01 20/02/2021 15

Figure 6: RCE implementation of the Digital-X MDO process

FLIPASED D1.2 Requirements capture for a/c MDO design v01 20/02/2021 16

4 Definition of interfaces

4.1 CPACS

Aircraft design projects are characterized by interdisciplinary collaboration between a large amount of
heterogeneous disciplines. Each discipline contributes with specialized knowledge and software tools
which are integrated in automated simulation workflows. The utilization of a common data model signifi-
cantly reduces the number of possible interconnections between the modules and ensures a consistent
source of information. Such a data model was established in the Common Parametric Aircraft Con-
figuration Schema (CPACS) by the DLR. The following description is largely based on the associated
publication of Alder et al. [1]. Aircraft design workflows must account for the interaction of various
disciplines such as structural mechanics, aerodynamics or flight mechanics. One possibility to consider
this interaction is to integrate the required sub-disciplines in a monolithic software architecture used to
synthesize an aircraft on conceptual and design level by applying sequential iteration methods. From
a developer’s point of view, the internal data exchange between analysis modules within the mono-
lithic system is advantageous concerning the easiness of resolving data and model inconsistencies.
Due to the increased complexity of the design considerations already in early aircraft design stages
nowadays however, the process cannot be handled by a single person anymore. Therefore, today’s
research on collaborative MDO is often based on tool integration framework which allow to integrate
analysis modules in decentralized workflows enabling engineering departments at different sites to be
involved in the design process. The open-source software RCE [3] (Remote Component Environment)
is an example of such a process integration framework. It enables the connection of analysis modules
via a server-client based network infrastructure. Upon workflow execution, the execution of individual
modules hosted on their respective server instances is triggered when required and the required data
is automatically exchanged. In this construct, only input and output data is exchanged while the tool
itself remains under control of the tool owner. A challenge arising within this approach is that the stake-
holders might use different data models and vocabulary resulting in N(N-1) possible directions of data
exchange between N tools. Within such a simulation process, the consistency among the multiple disci-
plinary models and different levels of details of the simulations needs to be guaranteed. One solution to
this challenge is obtained by introducing a central data exchange format based on common semantics
for the whole system to be designed (e.g., full parametrization of an aircraft) which is easy to read and
interpret by human. As depicted in fig. 7, by using this single source of truth the amount of connections
reduces to 2N. This is the main motivation for the development of common aviation data models.

The data model CPACS has been introduced and developed at the German Aerospace Center (DLR)
since 2005. CPACS is implemented in XML. XML is an open standard, which is officially coordinated
and documented by the Wold Wide Web Consortium (W3C) and nowadays globally accepted in the field
of information technology. XML has a very generic character and can therefore serve as a computer-
processable meta-language enabling the development of an aviation ontology as a markup language
itself. Another strength of XML is the separation of the data structure from the actual content. This
allows for the definition of complex structural and semantic rules in a separate XML Schema Definition
(XSD) file, while users can independently describe data using an exchange format that is easy to read
by just using a text editor. Making use of the hierarchical representation of data in XML the structure
of CPACS mainly follows a top-down approach which decomposes a generic concept (e.g., an aircraft)
into a more detailed description of its components. This originates from the conceptual and preliminary
design of aircraft, where the level of detail is initially low and continues to increase as the design
process progresses. The hierarchical structure furthermore promotes the simplicity of the exchange
format which is required in collaborative design environments so that the various stakeholders can
easily append their results. Furthermore, supporting libraries like TIXI and TiGL [9] exist to interface,
respectively visualize the current aircraft configuration, cf. fig. 8.

FLIPASED D1.2 Requirements capture for a/c MDO design v01 20/02/2021 17

Figure 7: CPACS as common interface between disciplines

Figure 8: CPACS based aircraft configuration with internal structure as visualized by TiGL 3.0

4.2 Interface: CAD model to FE-model of wing

CPACS serves as the interface between the CAD model and FE-model. The path of the Catia file, which
is the output of the geometry modeling block, would be saved in a CPACS file. The structural modeling
block would read the CPACS file and find the Catia file based on the path. Thanks to the central data

FLIPASED D1.2 Requirements capture for a/c MDO design v01 20/02/2021 18

model CPACS, there is no needs to develop a specific interface between Catia and HyperMesh.

The position and number of ribs depend on the configuration of flaps. So there are no definitions of ribs
in the CPACS file but only the flaps. For the sake of completion, ribs would be treated as the geometry
modeling block’s output and written into the CPACS file.

4.3 Interface: CAD model to Aero-model of wing

For the aerodynamic modeling, the consortium decided to use DLM. In order to generate the panel
model, a Python script is written to extract the geometry information from the CPACS file and export the
panel model in Nastran bdf format. There is actually no direct interface between the CAD model and
the aerodynamic model because no information is extracted from the Catia model.

4.4 Interface: wing FE/aero-model to full aircraft NASTRAN aeroelas-
tic model

The structural FE model of the wing is obtained from the CAD-FEM toolset at TUM. This wing model is
integrated to the fuselage and empennage based on aeroelastic models generated during FLEXOP at
DLR-AE.

In order to smoothen this integration, an interface between the models is set up. This is in the form
of a document describing a numbering scheme for the different cards present in the models, for each
component. Additionally, connection points between the components, for instance, between the fuse-
lage and wings is also specified, such that iterations of the wing models can always be integrated to the
aircraft model without any changes or adaptations necessary.

Similarly, the aerodynamic DLM model of the wing is also integrated with those of the fuselage and em-
pennage. During the course of the MDO task, the FE and DLM models of the fuselage and empennage
are proposed to remain unchanged, using the same design and models as in the FLEXOP project.

The interface to the downstream blocks is through mass, stiffness matrices and additional bulk data
required for aeroelastic analyses. These are transferred to a suitable directory, for access to the MDO
blocks downstream.

4.5 Interface: FE-models to structural optimization block

The interface between the FE modelling block and the structural optimization block is through property
cards in the structural model. As inputs to the structural optimization block, the FE model of the wing
including its property cards, the loads to be used for the sizing and a set of optimization options are
provided. These options include for instance, thickness bounds, laminate design constraints, safety
factor on structural constraints, etc. The structural properties of the fuselage and empennage are not
optimized.

The output of the structural optimization block is a new set of property cards, that represent the stiffness-
optimized wing. These property cards directly influence the stiffness of the wing. This is propagated to
the downstream MDO blocks via the condensed NASTRAN aeroelastic model of the full aircraft.

FLIPASED D1.2 Requirements capture for a/c MDO design v01 20/02/2021 19

4.6 Interface: controllers

4.6.1 Expected closed-loop structure

Generally, aircraft manufacturer control design workflow follows what we can call a frequency grid ap-
proach. This approach consists in designing different controllers, through a frequency guideline. Each
of them address a phenomena an aircraft is faced during its operation. Within the overall MDO process
philosophy and in this WP, we aim at following this approach. With reference to Figure 9, one may notice
that different phenomena (flight, loads...) usually occurs at different frequencies. These frequencies are
dependent on the geometry and structure of the aircraft. In the considered case, one may expect even
more blending between each phenomenon. Still the big picture remains valid. This sequential control
structure will be kept in mind in the WP2 flow to stick to industrial and practical expectations.

Figure 9: Frequency grid of the physical phenomena occurring over an aircraft. Ranges and values are
different from an aircraft to an other.

As a matter of consequence, the closed-loops one is intended to develop is presented as in Figure 10,
where each function in cascaded with the other. More specifically, the flight controller aims at focusing
on the handling qualities and manoeuvrability while the load control focuses either on maneuver of gust
phenomena. One underlying objective of this WP2 is to design such control law, but not only. As the
complete process addressed in the FLiPASED project is an MDO one, aircraft parameters p will also
be tuned and optimised, together with the control. These control law are usually designed following the
increasing frequency physics: first flight control, then load, etc.

As presented in Figures 9 and 10, the flight control system layout will gather a set of multiple functions.
Each function should be independently designed without affecting the others. Moreover, as the func-
tions are connected but somehow with different objectives, we will consider designing them with the
following sequence:

1. Flight control, a flight oriented control

2. MLA, a maneuvers load alleviation control

3. GLA, a gust load alleviation control

4. Flutter, a flutter shield control

As all these phenomena are specific and operate at different frequencies, the models H(p) (where H
is a complex linear map and p the parameter vector) involved in the design optimisation step may vary
from a function to an other. By this one intends that even if one single global model is provided by
the upper WP, different sub models may be constructed within this WP, accordingly to the considered
phenomena and control design objective.

FLIPASED D1.2 Requirements capture for a/c MDO design v01 20/02/2021 20

Figure 10: Multiple control loops considered in the WP2.

4.6.2 Input-output data description

Without detailing the typical inputs and outputs, the following Figure 11, gathers the main input and
output data that has to be exchanged from the upper WP to the lower ones. The global interconnection
is referenced in the main project document.

Figure 11: Data exchanges within WP2.

Inputs When dealing with control, the main input to be considered are the model, denoted H or H(p),
when considering a parametric one, or {Hi}nsi=1 if a set of models is given. More specifically, the following
inputs are expected.

• Linear (or nonlinear) dynamical models / simulators (finite or infinite dimension)

• Gust load envelope (nominal)

• Maneuver load envelope (nominal)

• Flutter-free envelope (nominal)

• Sensors/actuators dynamical characteristics and degree of freedom (such as location, speed...)

FLIPASED D1.2 Requirements capture for a/c MDO design v01 20/02/2021 21

Outputs As rooted on the above inputs, the WP2 aims at delivering both functions and results. The
former being functions, represent features developed that can be called within the MDO process, to get
optimised aircraft (including control laws and optimised aircraft design parameters). The latter being
results, represent tag (such as robustness, stability, ...) that can be used to decide the quality of the
actual design and derive some optimisation directions. The following gives the main outputs, plus some
potentially fruitful ones.

• Control functions (Flight / MLA-GLA / Flutter)

• Performance metrics

• System parameters

+ Reduced models (suitable for control and analysis)

4.6.3 Functional task sharing

The organisation between the three research groups involved in this WP2 follows the Table 1. This
table presents the functions to develop and the holder of each of them. As a preliminary report, this
table should be amended and filled during the project life. Still, as this point, checking all these tasks
will result in a complete tool for fast aircraft control law and parameter optimisation.

FLIPASED D1.2 Requirements capture for a/c MDO design v01 20/02/2021 22

WP Title Function Holder
2.1
Modelling

Construction linear
ROM

X Order reduction automatic guess ONERA

X Model order reduction from finite realisation SZTAKI
X Model order reduction from infinite realisation or
transfer function

ONERA

Construction para-
metric ROM

X From bundle of LTI models SZTAKI

Construction LPV
ROM

X From bundle of LTI models SZTAKI

Model integration X Integrate the models within the MDO tool SZTAKI
2.2
Control

Flight qualities X Design using INDI DLR

X Design using scheduled PID SZTAKI
GLA X Design using LTI H∞ control DLR

X Design using LTI Modal control DLR
X Design using LPV control SZTAKI

MLA X Design using (linear) MPC control SZTAKI
X Design using structured H∞ control ONERA

Flutter control X Design using LTI H∞ control DLR
X Design using LTI Modal control SZTAKI
X Design using LPV control DLR

Others X Actuators / sensors placement DLR
X Wing shape control for optimal drag configuration SZTAKI

2.3
Analysis

Performances X Assessment function of the performances ONERA

X HiL SZTAKI
X Worst case analysis SZTAKI
X Actuator limits DLR
X H∞ norm computation (large-scale and delayed
models)

ONERA

Table 1: Task sharing.

FLIPASED D1.2 Requirements capture for a/c MDO design v01 20/02/2021 23

5 Conclusion

This deliverable clearly distinguishes the toolchains used for demonstrator wing design and commercial
aircraft wing design and specifies the corresponding objectives and requirements. The preliminary
structure and functionality of the MDO toolchain are proposed. The integration framework RCE and
common data model CPACS are determined as the standard tools for the toolchain.

The aforementioned outcomes clarify the common stand for the consortium and lay the groundstone
for the subsequent toolchain implementation.

FLIPASED D1.2 Requirements capture for a/c MDO design v01 20/02/2021 24

6 Bibliography

[1] Marko Alder, Erwin Moerland, Jonas Jepsen, and Björn Nagel. Recent advances in establishing
a common language for aircraft design with cpacs. In Aerospace Europe Conference 2020, 25-28
Feb 2020, Bordeaux, Frace., 2020.

[2] G. Becker. Quadratic Stability and Performance of Linear Parameter Dependent Systems. PhD
thesis, University of California, Berkeley, 1993.

[3] Brigitte Boden, Jan Flink, Robert Mischke, Kathrin Schaffert, Alexander Weinert, Annika Wohlan,
Caslav Ilic, Tobias Wunderlich, Carsten M. Liersch, Stefan Görtz, Erwin Moerland, and Pier Davide
Ciampa. Distributed Multidisciplinary Optimization and Collaborative Process Development Using
RCE. In AIAA Aviation 2019 Forum, 17–21 June 2019, Dallas, TX, USA. American Institute of
Aeronautics and Astronautics, 2019.

[4] S. Görtz, C. Ilic, M. Abu-Zurayk, R. Liepelt, J. Jepsen, T. Führer, R. Becker, J. Scherer, T. Kier,
and M. Siggel. Collaborative multi-level mdo process development and application to long-range
transport aircraft. In 30th International Congress of the Aeronautical Sciences, Daejeon, South
Korea, September 25-30. 2016. ICAS, 2016.

[5] Andrew B. Lambe and Joaquim R. R. A. Martins. Extensions to the design structure matrix for
the description of multidisciplinary design, analysis, and optimization processes. Structural and
Multidisciplinary Optimization, 46(2):273–284, Aug 2012.

[6] Yasser M. Meddaikar, Johannes Dillinger, Thomas Klimmek, Wolf Krueger, Matthias Wuesten-
hagen, Thiemo M. Kier, Andreas Hermanutz, Mirko Hornung, Vladyslav Rozov, Christian Breit-
samter, James Alderman, Bela Takarics, and Balint Vanek. Aircraft aeroservoelastic modelling of
the FLEXOP unmanned flying demonstrator. In AIAA Scitech 2019 Forum. AIAA, jan 2019.

[7] Andreas Page Risueño, Jasper Bussemaker, Pier Davide Ciampa, and Bjoern Nagel. MDAx: Agile
Generation of Collaborative MDAO Workflows for Complex Systems.

[8] Jeff S. Shamma. Analysis and Design of Gain Scheduled Control Systems. PhD thesis, Mas-
sachusetts Institute of Technology, Cambridge, 1988.

[9] Martin Siggel, Jan Kleinert, Tobias Stollenwerk, and Reinhold Maierl. TiGL: An open source
computational geometry library for parametric aircraft design. Mathematics in Computer Science,
13(3):367–389, jul 2019.

[10] Bela Takarics, Balint Vanek, Aditya Kotikalpudi, and Peter Seiler. Flight control oriented bottom-up
nonlinear modeling of aeroelastic vehicles. In 2018 IEEE Aerospace Conference. IEEE, mar 2018.

[11] G. Vinnicombe. Measuring Robustness of Feedback Systems. PhD thesis, Univ. Cambridge,
Cambridge, 1993.

[12] Fen Wu. Control of Linear Parameter Varying Systems. PhD thesis, Univ. California, Berkeley,
1995.

[13] Matthias Wuestenhagen, Thiemo Kier, Yasser M. Meddaikar, Manuel Pusch, Daniel Ossmann, and
Andreas Hermanutz. Aeroservoelastic modeling and analysis of a highly flexible flutter demonstra-
tor. In 2018 Atmospheric Flight Mechanics Conference. AIAA, jun 2018.

FLIPASED D1.2 Requirements capture for a/c MDO design v01 20/02/2021 25

	Executive summary
	Objective functions of toolchain and requirements
	MDO toolchain
	MDAx
	Functions of blocks
	CPACS generation block
	Geometry block
	FE-model block
	Aero-model block
	Control oriented modeling
	Baseline control design block
	Flutter control design block
	Closed loop analysis block
	Report generation block

	RCE

	Definition of interfaces
	CPACS
	Interface: CAD model to FE-model of wing
	Interface: CAD model to Aero-model of wing
	Interface: wing FE/aero-model to full aircraft NASTRAN aeroelastic model
	Interface: FE-models to structural optimization block
	Interface: controllers
	Expected closed-loop structure
	Input-output data description
	Functional task sharing

	Conclusion
	Bibliography

