B Ref. Ares(2021)7099506 - 18/11/2021

U ol

FITPASED

D1.4 Information and interfaces definition for Collaborative
Work Process

Thiemo Kier, Yasser Meddaikar, Matthias Wuestenhagen (DLR),

Fanglin Yu (TUM), Balint Vanek, Bela Takarics (SZTAKI), Charles

Poussot-Vassal (ONERA)

GA number: 815058

Project acronym: FLIPASED

Project title: FLIGHT PHASE ADAPTIVE AEROSERVO-
ELASTIC AIRCRAFT DESIGN METHODS

Funding Scheme:H2020 ID: MG-3-1-2018

Latest version of Annex I: 1.1 released on 12/04/2019

Start date of project: 01/09/2019 Duration: 40 Months

Lead Beneficiary for this deliverable: SZTAKI

Last modified: 18/11/2021 Status: Delivered
Due date: 30/09/2021

Project co-ordinator name and organisation: Balint Vanek, SZTAKI
Tel. and email: +36 1 279 6113 vanek@sztaki.hu
Project website: www.flipased.eu

Dissemination Level
PU | Public X
CO | Confidential, only for members of the consortium (including the Commission Services)

“This document is part of a project that has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 815058.”

FITPASED

Glossary

ASE Aeroservoelastic

CAD Computer-aided Design

CPACS Common Parametric Aircraft Configuration Schema

DLM Doublet Lattice Method

FEM Finite Element Model

SW Soft-ware

HW Hard-ware

A% Verification and Validation

GLA Gust Load Alleviation

MLA Manoeuvre Load Alleviation

MDO Multidisciplinary Design Optimization

MLA Manoeuvre Load Alleviation

PID Proportional-Integral-Derivative

RCE Remote Component Environment

HIL Hardvare-in-the-loop

FCC Flight Control Computer

TCL Tool Command Language

FITPASED
Table of contents

Executive Summary 5

2 Interdisciplinary Design Architectures and Status 6
2.1 MDO toolchain developmentstatus L. 6

2.2 Hardware-in-the-loop (HIL) testing status 7

2.3 Flighttestingstatus 7

3 Aircraft Geometry and FEM Model generation L. 8
3.1 CPACS Generation e 8

3.2 Geometry Model Updating 8

3.3 FEM Model Generation 8

3.4 Aerodynamic Model Generation 9

3.5 RCE Integration e 9

4 Aeroelastic Model Generation 12
4.1 Aeroelastic Model Integration - NASTRAN 12

4.2 Aeroelastic Model Generation and Simulation 13
4.21 Modelstobegenerated 14

5 Control Design Blocks 15
5.1 Baseline and Flutter Suppression Control Design Blocks 15

5.2 MLA and GLA Control DesignBlocks 16

6 Mission Analysis 17
7 Hardware-in-theloop Tests 18
8 FlightTests e 20
9 Overall Architecture Evaluation 21
10 Conclusion e 22
11 Bibliography 23

FITPASED
List of Figures

1 Toolchains developed in FLIPASED 6
2 RCE workflow for the testing the communication and data sharing between partners . . . 7
3 CPACSdata. e 9
4 Catiawingmodel e 10
5 Defined file architecture forwing FEM model 10
6 Defined file architecture forwing DLM model 11
7 Integratedblocks inRCE 11
8 Defined folder-file architecture for wing models fromTUM 12
9 Defined folder-file architecture of NASTRAN aeroelastic models to DLR-SR 13
10 RCE workflow for the aeroelastic model generation and simulation 14
11 RCE workflow for the aeroelastic model generation for baseline and flutter suppression

control design e 15
12 Controller inputs and outputs forthe HILtest 18

FITPASED

1 Executive Summary

The deliverable ”D1.4 Information and interfaces definition for Collaborative Work Process” lays the
foundation of the MDO toolchain developed in WP2 of the project, in correspondence with the demon-
strator aircraft. In the beginning of the project, several key factors have been identified and objectives
as well as performance metrics have been proposed to show the benefits of the MDO tool-chain. The
interdisciplinary teams within the project share models, data and tools among them. D1.4 formalizes
these steps within the iteration loops and establishes a document to define their interdependency and
their standard interfaces (CAD, NASTRAN, Dymola, Matlab/Simulink, python, embedded C code). In
addition to the MDO toolchain, an interface to the HIL tests needs to be defined as well. The HIL tests
serve as crucial investigation on whether the developed models and controllers are implementable on
hardware as well as their final assessment before the flight tests. Finally, the developed tools in the
MDO toolchain are evaluated in flight tests as well after the HIL tests. The lead beneficiary for the de-
liverable is SZTAKI, but all other consortium partners TUM, ONERA,and DLR contributed significantly
to the deliverable by various aspects of the interface definitions and data sharing definitions and MDO
toolchain setup tests.

FITPASED

2 Interdisciplinary Design Architectures and Status

There are three main toolchains developed within FLIPASED, which can be seen in Figure 1.

Geometry
(CAD)

HIL test
FEM (NASTRAN) HIL model ests
Structural sizing

|
HIL test
Mass Modm‘
fuel, add. system FCC
mass

%,

!
o, R
/06 Model Integr. Flight test Lessons learnt
Y, —
Loads Ground test,
analysis GVT

Flight tests
4< Ctrl Design FCS
HQ assessment

Flutter

i

Mission
Analysis

Figure 1: Toolchains developed in FLIPASED

The main toolchain is the MDO toolchain that starts from the CPACS aircraft geometry definition and
finishes with the developed aircraft geometry/parameter set tightly coupled with the baseline, manoeu-
vre load alleviation, gust load alleviation and flutter suppression controllers evaluated in the mission
analysis. Based on a successful mission analysis the controllers and the models need to be handed
over to the HIL test block. The HIL model needs to be real-time executable and the controllers in dis-
crete from. The HIL tests asses the performance of the controllers in addition to the implementation
aspects. The third main block are the flight tests. This block serves as the final maturity test of the
developed methodologies. Conclusion are drawn from all three blocks which are then feed back to the
CPACS model generation step.

2.1 MDO toolchain development status

The MDO toolchain development is carried out in two parallel branches. In the first branch each partner
implements its own set of tools into the RCE framework locally. This step requires capturing the require-
ments of the input data coming from the previous MDO block and defining the output data the actual
block is creating. This branch of the MDO toolchain is mostly finalized and only minor adjustments are
needed. This is the milestone when the current deliverable can be finished.

FITPASED

In the second branch, the communication between the partner blocks and data sharing is implemented.
In this case first a simple toolchain is set up for creating variables that are then shared among the
partners. The example workflow is shown in Figure 2. This test was carried out successfully. As
the final step, the full blocks of the first branch need to be set up to communicate between various
partners and to be able to share data. This step is currently under ongoing development and in the
next FLIPASED meeting (22/11/2021) at TUM the implementation aspects will be verified and the initial
MDO toolchain run is expected to be carried out.

el d®] B

| inter_t_dir inter..._tum inter_1_sta —

©

Figure 2: RCE workflow for the testing the communication and data sharing between partners

2.2 Hardware-in-the-loop (HIL) testing status

Due to the significant effort of conducting flight tests the main method to clear any newly developed
system component or software function is to test it in the HIL simulation platform. It has two distinct
versions, one is hosted on a legacy Windows 10 based PC, running Simulink Real Time, and inerfaced
with external devices via the standard PCI cards of a desktop PC. This system has two instances: one
at SZTAKI (for software development) and another one at TUM (for pilot training). The other HIL is
based on a Speedgoat target machine, which is a turnkey solution with dedicated hardware interfaces
and dedicated software implementation of the required communication protocols between the simu-
lation and hardware components, this is also available at two locations (SZTAKI uses it for SW/HW
development and another one is under commission at DLR to develop the necessary real-time capable
simulation platform for V&V).

The inputs (controllers and models), input and output interfaces have been defined to the HIL tests.
The only remaining items are the discrete versions of the MLA and GLA controllers, what are under
fine-tuning, to be able to test the complete ASE system in the HIL environment.

2.3 Flight testing status

The flight test with the demonstrator aircraft are running in parallel with the MDO toolchain development.
First the operation of the aircraft is investigated, then system identification tests are carried out and
finally the maturity of the developed controllers within the MDO toolchain will be evaluated. The detailed
scope and test schedule of these flight test campaigns are discussed in D3.1, D3.2, D3.3, D3.6, D3.8
and 3.11 respectively.

ol

FITPASED

3 Aircraft Geometry and FEM Model generation

Since 2005 DLR develops the Common Parametric Aircraft Configuration Schema, short CPACS. It
contains a parametric description of aircraft configurations as well as the complete transport system,
e.g. fleet and airport descriptions. On the other hand control system related layout and parameter
information is not standardized in it.

The number of interfaces in multi-disciplinary aircraft design is crucial for a flexible and efficient flow of
information. Along with CPACS the number of interfaces between analysis modules is not only reduced
but also do these become replaceable, as all adapt to one common definition.

The CPACS format allows the automatic generation, validation and documentation of data-sets. As a
part of the Release Kit, CPACS format, documentation and sample configurations are made available
at https://www.cpacs.de/ or at https://github.com/DLR-SL/CPACS.

The Common Parametric Aircraft Configuration Schema (CPACS) is a data definition for the air trans-
portation system. CPACS enables engineers to exchange information between their tools. It is therefore
a driver for multi-disciplinary and multi-fidelity design in distributed environments. CPACS describes the
characteristics of aircraft, rotorcraft, engines, climate impact, fleets and mission in a structured, hi-
erarchical manner. Not only product but also process information is stored in CPACS. The process
information helps in setting up workflows for analysis modules. Due to the fact that CPACS follows a
central model approach, the number of interfaces is reduced to a minimum.

3.1 CPACS Generation

CPACS Generation block is the first block in the MDO toolchain. It will generate a CPACS file as shown
in Figure 3 which holds aircraft configuration and optimisation variables, for instance, airfoil, planform,
structure layout and so on. All these information and optimisation variables needs to be given as the
input for this block. A Matlab script is used to initialize the CPACS data.

3.2 Geometry Model Updating

Geometry Model Updating block takes the CPACS data as the input. Tixi (https:/github.com/DLR-
SCitixi) and Tigl (https://github.com/DLR-SC/tigl) libraries are used to extract geometry and structure
information from CPACS. A Catia macro is used to update the existing wing model to the latest param-
eters. A Catia model will be the only output of this block, as shown in Figure 4.

3.3 FEM Model Generation

FEM Model Generation block takes the updated Catia model as input and uses TCL programming
language in HyperMesh to generate a FEM model. All relevant meshing parameters, modelling tech-
niques and interfaces with fuselage model and empennage model are predefined in macro script of
HyperMesh. A Nastran wing model is generated with an established numbering scheme and outputted
to several bdf files in a folder with predefined structure, as shown in Figure 5.

FITPASED
Mode Content
2 xml version="1.0" encoding="utf-8"
w [g] cpacs
xminsixsi httpe/Swwwow3.org/2001/XMLSchema-instance
xsi:noMamespacebchemal ocation CPACS_Schema.xsd
[e] header
w [g] vehicles
[8] rnaterials
w [e] aircraft
w [] model
ulD FLEXOP
[8] name FLEXOP

[e] reference
[e] fuselages
v [g] wings

v [g] wing
ulD WR
symmetry x-z-plane
[e] name WR
[8] description WR
[e] parentUID FU

[e] transformation
[e] sections
[8] positionings
|e] segments
[e] componentSegments
[e] wing
[8] analyses
w [g] profiles
[g] wingAirfoils
[e] fuselageProfiles
[8] toolspecific

Figure 3: CPACS data

3.4 Aerodynamic Model Generation

Aerodynamic Model Generation takes the CPACS file as input and extracts airfoil and wing planform
using Tixi and Tigl library. The TiGL library uses the OpenCASCADE CAD kernel to represent the
airplane geometry by NURBS surfaces. The library provides external interfaces for C, C++, Python,
Java, MATLAB, and FORTRAN. A Python script is used to generate DLM panel model and written out
to bdf files as predefined file structures as shown in Figure 6

3.5 RCE Integration

All aforementioned blocks are integrated into RCE as shown in Figure 7. RCE is a distributed integration
environment for scientists and engineers to analyze, optimize, and design complex systems like aircraft,
ships, or satellites. It is especially suited for multidisciplinary collaboration. Handling complex systems
requires many experts and several tools for analysis, design, and simulation. Using RCE, these tools
can be shared between team members and integrated into automated, executable workflows. RCE is
extensible and supports different scientific applications with a wide range of requirements.

Corresponding wrappers are written in python to enable the integration. An additional Tigl viewer block
is added to the workflow to visualize the aircraft configuration.

FITPASED

Figure 4: Catia wing model

D rbe_LW.nastran 07.10.2021 10:12 MNASTRAN-Datei 8KB
D rbed_MW.nastran 07.10.2021 10:12 MNASTRAN-Datei 4KB
D rbed_RW.nastran 021 10:12 MNASTRAN-Datei 8KB
D rbe3_LW_MolIM.nastran 07.10.2021 10:12 MNASTRAN-Datei 10KB
D rbed_MW_MoUM.nastran 07.10.2021 10:12 MNASTRAN-Datei 4KB
D rbe3_RW_MoUM.nastran 07.10.2021 10:12 MNASTRAN-Datei 10KB
D rbed_LF.nastran 07.10.2021 10:12 MASTRAN-Datei 6 KB
D rbed_RF.nastran 07.10.2021 10:12 MNASTRAN-Datei 6KB
D rbe3_LF_NolUM.nastran 07.10.2021 10:12 MNASTRAN-Datei TKB
D G_rbed_LW.nastran 07.10.2021 10:12 MNASTRAN-Datei 13KB

D G_rbe?_RW.nastran 021 10:12 MASTRAN-Datei 13 KB

[rbe3_RF_NoUM.nastran 07.10.2021 10:12 MNASTRAN-Datei TKB
[7] G_rbe2_MW.nastran 7.10.2021 10:12 MNASTRAN-Datei 4KB
D G_rbe2_RF.nastran MNASTRAN-Datei 9KB
D G_rbe2_LF.nastran MASTRAN-Datei SKB
[setl.nastran NASTRAM-Datei SKB
[set1 Rw.nastran 07.10.2021 10:12 MNASTRAN-Datei 4KB
[] set1_LE.nastran 07.10.2021 10:12 MNASTRAN-Datei S5KB
D set1_LW.nastran 021 10:12 MNASTRAN-Datei 4KB
[set_MW.nastran 07.10.2021 10:12 MNASTRAN-Datei 4KB
[] set1_LF.nastran 07.10.2021 10:12 MNASTRAN-Datei 4KB
D set]_TE.nastran 7.10.2021 1(:12 MNASTRAN-Datei 5KB
D csm.nastran 07.10.2021 10:12 MASTRAN-Datei 1.656 KB
[] set1_RF.nastran 07.10.2021 10:12 MNASTRAN-Datei 4KB
[rbe3 Lw.nastran 07.10.2021 10:12 MNASTRAN-Datei 14 KB
[] rbe3_LF.nastran 07.10.2021 10:12 MNASTRAN-Datei SKB
D rbe3_MW.nastran 7.10.2021 10:12 MNASTRAN-Datei 4KB
[rbe3_RW.nastran 07.10.2021 10:12 MNASTRAN-Datei 14 KB
D csm_right.nastran 07.10.2021 10:12 MASTRAN-Datei 232 KB
D rbe3_RF.nastran 07.10.2021 10:12 MNASTRAN-Datei 9KB

Figure 5: Defined file architecture for wing FEM model

FLIPASED D104_InformationAndInterfacesDefinitionForCollaborativeWorkProcess_V01_y2021m11d08 10

SIIPASED

Mame h Anderungsdatum Typ Grafie

[aset.baf BDF-Datei 1KB
[camber.bdf BDF-Datei TIKB
[Zf panel.bdf BDF-Datei 25KB

Figure 6: Defined file architecture for wing DLM model

@

i
& &

cpacs_gen catia_update

8

panel_gen

Figure 7: Integrated blocks in RCE

FLIPASED D104_InformationAndInterfacesDefinitionForCollaborativelWorkProcess_V01_y2021m11d08 11

4 Aeroelastic Model Generation

FITPASED

4.1 Aeroelastic Model Integration - NASTRAN

From the perspective of the RCE workflow, the input to the NASTRAN aeroelastic model generation

block are the following.

1. CPACS.xml - containing the most recent aircraft CPACS dataset

2. wingFE directory - directory containing the FE and DLM models of the wing, generated by TUM

3. principal_angle_shifts; » float variables - outer-level optimization variables that define the prinici-

pal angle with respect to which the laminates in the upper and lower skin are oriented

The wing models are generated by the preceding block following an established numbering scheme

for the entire aircraft, together with defined interfaces for assembly with the fuselage and empennage
models. This ensures that different configurations of the wing model are compatible with the existing
fuselage and empennage models, generated based on FLEXOP data. The input wing model to this

RCE block has a defined file-folder hierarchy as shown in Figure 8.

« [01-wingFE

2! aset.bdf

2/ camber.bdf
<sm.nastran
G_rbe2_LF.nastran
G_rbe2_LW.nastran
G_rbe2_MW.nastran
G_rbe2_RF.nastran
G_rbe2_RW.nastran
panel.bdf
rbe2 LF.nastran
rbe2_LW.nastran
rbe2_MW.nastran
rbe2_RF.nastran
rbe2_RW.nastran
rbe3_LF.nastran
rbe3_LF_NoUM.nastran
rbe3_LW.nastran
rbe3_LW_NoUM.nastran
rbe3_MW.nastran
rbe3_MW_NoUM.nastran
rbe3_RF.nastran
rbe3_RF_NoUM.nastran
rbe3_RW.nastran
rbe3_RW_NoUM.nastran
setl.nastran
2/ SOL103.bdf

)

Figure 8: Defined folder-file architecture for wing models from TUM

The NASTRAN aeroelastic model integration block primarily performs the following tasks.

1. Create a modified wing FE model by rotating the existing laminate definitions on the upper and

lower skins according to the input variables principal_angle_shifts; »

2. Assemble the aerodynamic model of the aircraft by merging the panel definitions, spline sets and

the camber correction entries for the wing, fuselage and empennage

3. Run pre-defined NASTRAN decks corresponding to modal, aeroelastic, flutter analyses and a

static Guyan reduction

12

FITPASED

« [Output
~ BB 51-flipased-ac
» B n2001_FLIPASED_a0
» [na002_FLIPASED_aK
» B na003_FUPASED_aT
» [ES na004_FLIPASED_aAA
3 ;rmﬂﬁ’: FLIPASED aAD
» 5 na006_FLIPASED_aU
» [l na007_FLIPASED_aAE
~ EI 51-nastran-data
i aset.bdf
@ camber.bdf
p» Na00Z_FLIPASED_aK kaa
p= NA0D2_FLIPASED akK.maa
a panel.bdl
NastranModelintegration_output_CPACS.xml|

Figure 9: Defined folder-file architecture of NASTRAN aeroelastic models to DLR-SR

4. Aggregate the output data, including mass and stiffness matrices, and pre-defined aerodynamic
bulk data into the output directory

The outputs from this block include two directories and the CPACS dataset as shown in Figure 9.

1. 51-nastran-data directory - contains the outputs required by the next partner in the RCE workflow,
DLR-SR in this case. Files include the mass and stiffness matrices, aerodynamic bulk data -
panel definition and camber correction, and other outputs needed for the tools downstream.

2. 51-flipased-ac directory - contains different NASTRAN solution decks for various analyses in order
to aid in debugging.

3. output CPACS dataset - for the demonstrator workflow, the CPACS dataset is not altered during
the execution of the tool. For the scale-up workflow, information from analyses such as structural
weight, thickness and material properties of the various structural entities can be appended.

4.2 Aeroelastic Model Generation and Simulation

The aeroelastic model generation and simulation workflow implemented in RCE is given in Figure 10.
The workflow is executed from the left to the right. All the corresponding functions are executed in
Matlab. The result of each individual block is saved in a Matlab struct. First the aerodynamic, struc-
tural and spline grid information as well as mass and stiffness matrices are provided to the first block
called "varloads model”. VarLoads is a tool created in Matlab for defining flexible aircraft models by
e.g. setting-up aerodynamic influence coefficient matrices and performing an eigenvalue analysis of
the aircraft structure. The results are passed on to the block "create model input”. The data is then
downsized and provided in a specific form, so it can be used with the Simulink simulation environment.

In the block "trim lin model” the simulation environment is initialised and also linearized. It is possible to
adapt the simulation environment based on various parameters, that have to be defined. First of all the
model order is selected by deciding on a model with unsteady aerodynamics or steady aerodynamics,
flexible dynamics or rigid dynamics. Furthermore, dynamics coming from sensors, actuators, airbrakes
and the engine can be switch on or off. Dependent on the simulation to be performed or the type of
controller to be synthesized gust inputs and load outputs can be added. Finally the operating point for
which the aircraft model should be trimmed and linearized has to be selected by defining the indicated

13

FIIiPASED
L ~— -
~_ [
O b o o o 3
=] | varl..del crea...put trim...del | sim...el =
_,//’ \\\\
O \\\

gla_..esis =

Figure 10: RCE workflow for the aeroelastic model generation and simulation

airspeed, the barometric height, the roll angle and others. Subsequent to the block "trim lin model” the
model can be simulated with the block "sim model” by means of the trim results. It creates a time series
for dedicated inputs commanded to the control surfaces, the engine rotational speed and so on.

4.2.1 Models to be generated

As already stated before, several flavors of the same model can be generated. The goal is to keep
the number of the models as small as possible while satisfying the requirements of the control design
blocks. The generated models are the following:

e Model for baseline control design — 12 state rigid model, set of LTI models parameterized by
velocity;

e Model for manoeuvre load alleviation — LTI models;

e Model for gust load alleviation — LTI models;

e Model for flutter suppression controller design — low order flexible model, set of LTI models;

¢ Model for mission analysis — LTl and nonlinear model;

e Model for HIL tests and pilot training — real time capable nonlinear Simulink model.

14

FITPASED

5 Control Design Blocks

In accordance with the workflow in Figure 10, after the "trim lin model” block has finished, the synthesis
of the various controllers follows. The linearised state-space systems offer the opportunity to synthesize
linear controllers or gain-scheduled.

5.1 Baseline and Flutter Suppression Control Design Blocks

The model generation, the control synthesis and the analysis of the resulting controllers for the baseline
and flutter controllers is shown in the workflow presented in Figure 11.

& | A | 8 | 8

Modelling (1) FlutControl Analysis

)

Seript 1

Q

Baseli...ntrol

Figure 11: RCE workflow for the aeroelastic model generation for baseline and flutter suppression
control design

The RCE workflow takes the nonlinear Simulink model with the configuring struct file from DLR-SR as
the input files. These files are shared through RCE compressed files and are referenced withtin the
CPACS file. The "Modeling” block generates two models in this case. The flutter control synthesis block
requires a low order aeroelastic model as an input. The aeroelastic model is obtained by the bottom-up
modeling approach ([3, 4]) which provides a sufficiently low order model for the control design. The
generated model is a set if linearized model obtained from trimming and linearizing the simulink model.
The linearized state space models are parameterized by the airspeed, but also by uncertainties in the
FEM model of the aircraft. This model is saved as a mat file with name FlexACModel. The baseline
controller accepts the rigid body, 12 state linearized models as input. This model is also generated in
the "Modeling” block from the aeroelastic moodel by residualizing the flexible and aerodynamic states.
The baseline control design model does not contain any uncertainties, but a set of LTI state space
model parameterized by the airspeed. This model is saved as a mat file with name RigACModel.

Based on the FlexACModel the flutter suppression controller is generated in the "FlutControl” blocks ([2])
and sets the controller as a state space model at the output in a mat file. Based on the RigACModel the
baseline controller is synthesized in the "BaselineControl” block ([1]) and sets the simulink block with
the configured PID controllers as the output.

Once the flutter suppression and baseline control design blocks finish the synthesis they pass the
resulting controllers and the FlexACModel model to the "Analysis” block. This block then runs a fre-

15

FITPASED

quency domain analysis in two aspects. First, it assesses the performance of the two controllers acting
together simultaneously. Second, it checks the robustness margins and flutter margins of the result-
ing controllers and if the minimum requirements are satisfied a pass flag is set and a PDF report is
automatically generated. The pass flags and the PDF are finally set as the outputs of the block.

The main algorithms of each block and their adaptation to the MDO/RCE framework is given in deliver-
able D2.2 Report on tool adaptation for collaborative design.

5.2 MLA and GLA Control Design Blocks

The second part of Figure 10 shows the manoeuvre load alleviation controller block "mla control syn-
thesis” and a gust load alleviation controller block "gla control synthesis”. Both seek to reduce the
wing root bending moment corresponding to manoeuvres and gust encounter. Their structure is pre-
defined with specified inputs and outputs. The pitch angle and rate, the commanded and real vertical
acceleration are needed for the manoeuvre load alleviation controller. Based on these measurements
it calculates the necessary aileron and elevator deflections. The gust load alleviation controller takes
the pitch rate, the vertical acceleration in the fuselage and on both wing tips as an input. It likewise
provides aileron and elevator deflections. Both controllers are synthesized based on the structured
H.. synthesis method with a full order model including unsteady aerodynamics, gust inputs and load
outputs. Before the synthesis takes place, the order of the state-space model of the aircraft is reduced
removing irrelevant dynamics. As an objective function for the MLA and GLA controller the weighted
transfer function from gust input to wing root bending moment has to be reduced.

Output of the RCE blocks are state-space models of the controllers. More controller types, like an active
flutter suppression controller, could be synthesized subsequent to the "trim lin model” block as well. The
resulting controller state-space systems can then be fed to a closed loop model in order to analyse the
overall aircraft performance.

16

FITPASED

6 Mission Analysis

The frequency based analysis of the resulting controllers are carried out within the control design blocks.
Therefore, the mission analysis can only be started in case all controllers have satisfactory performance
and robustness. The mission analysis block takes the controllers and models as the input. The con-
trollers are provided in a Matlab struc file from the control design block, the nonlinear model is given as
a Simulink file with the configuration struc file. All the files are handed over via RCE as a compressed
folder and are indexed in the CPACS file.

One of the goal of the mission analysis is to minimize the aerodynamic drag. Specifically, the induced
drag is addressed by high aspect ratio wing designs. For this the induced drag has to be modeled for
the reference aircraft and an optimal wing shape needs to be determined which results in the minimal
induced drag.

The second goal is to assess the benefits of the improved aircraft and of the developed controllers. This
goal requires a model that is of high fidelity, contains gust inputs and load outputs as well as all four
controllers.

To analyse up to which speed it is safe to operate the aircraft, it is necessary to assess the speed at
which flutter becomes unstable. For a flutter analysis the nonlinear aircraft model is linearized at several
speeds. The poles of the model linearized at the highest speed are analysed at first. As flutter is most
likely to be unstable at that speed, the analysis of the unstable poles reveal the flutter poles. Thus the
flutter eigenvalues and eigenvectors are determined. By using a mode matching algorithm the flutter
mechanism can be tracked for the linearized models with stepwise decreasing speed. With larger speed
steps the tracking algorithm is more likely to fail. It is therefore recommended to choose small speed
steps. The flutter speed is the speed, at which the flutter poles become stable. For more accuracy
the flutter speed can also be estimated by interpolation between the flutter poles at the different flight
speeds.

For the overall aircraft performance the aircraft is considered to operate in cruise. The flight conditions
within cruise only changes due to defueling. To account for this change in mass a few discrete mass
cases of the current aircraft configuration are provided. They represent different fuel levels. The neces-
sary thrust for a mass case is then estimated by means of the overall drag, which is minimised through
allocation of the control surfaces. The fuel consumption can be determined based on the required
thrust. As soon as a certain level of fuel is consumed, a new mass case representing the predominant
fuel level best is chosen. The sum of the distances the aircraft flies per mass case then provides the
overall aircraft range.

17

FITPASED

7/ Hardware-in-the loop Tests

The second major toolchain in FLIPASED is the HIL test. The main purpose of the HIL test is to test
the controllers running on the FCC - flight control computer. With this simulation, the FCC hardware
and the controllers are testable and it can be assessed whether the designed controllers have any
implementation limitation and also how they work in a realistic environment. The HIL architecture
consists of two main components: a PC that runs the simulation model and the FCC running the control
algorithm.

Requirements for the nonlinear model:

e The model is in continuous time and it has to run in real time. The real time capability of the model
can be tested by running the simulation in External mode with Simulink Desktop Real-Time option
set under menu item Simulation/Model Configuration Parameters/- Code Generation.

e The inputs of the model are the 19 controlled inputs. In addition to these inputs, the GLA controller
tests also require the gust inputs.

e The outputs of the model are the sensors that can be used by the controllers. In addition to these
outputs, the model also need to contain the loads as output in order to assess the MLA and GLA
controllers.

Requirements for the Controller:

e The controller needs to be transformed to discrete time in case it was designed in continuous
time. The sampling time is 5ms.

e The controller block designed by each partner has to be a static map between (Uc, x.[k]) and (Yc¢
, X[k + 1]), where x denotes the state of the controller (see Figure 12.). The input and output
signals equal to the output and input of the model, i.e. Yc = Uy and Uc = Yu.

3XIK] x[k+1]p

Controller

Figure 12: Controller inputs and outputs for the HIL test

The MDO toolchain needs to provide the model and controllers to the HIL environment. The model is
provides as a Simulink model with fixed structure and a configuration file that contains all the necessary
data of the model. The order of the HIL model is not reduced in order to retain as high fidelity as
possible.

18

FITPASED

The control design blocks of the MDO toolchain provide the baseline, MLA, GLA and flutter suppression
controllers in discrete time. All the controllers are given as state space models that are ready to be used
for automatic C code generation in order to be uploaded to the FCC.

The HIL tests provide time domain simulation results after evaluating the controllers. The responses
are evaluated numerically and based on the evaluation pass/no pass flags are set for each individual
controller.

19

FITPASED

8 Flight Tests

The third major toolchain consists of pilot training, ground tests and flight tests. The controllers and the
models are the passed on from the HIL tests which can directly be used for pilot training. Ground tests
and flight tests can only be carried out with the physical aircraft and not after each iteration of the MDO
toolchain.

The ground testing serves to evaluate the structural properties of the newly developed wing in order to
clear its airworthiness and to produce a comprehensive modal model of the aircraft. This modal model
can then be used for Finite Element (FE) model updating,flutter calculations and controller updating.

The main goal of the flight test is to validate the maturity of the developed controllers and control design
methodologies. The baseline controller has already been validated in the legacy FLEXOP project.
Therefore, the main focus in FLIPASED is on the testing of the MLA, GLA and flutter suppression
controllers.

The details of the ground and flight test plans are given in deliverable “D1.3 Demonstrator Ground and
Flight Test Requirements Definition”.

20

FITPASED

9 Overall Architecture Evaluation

The goal of this section is to explain the connection between the MDO, HIL test and flight test toolchains.

The MDO toolchain is the main block in this case which has its own optimization and gets back to the
CPACS generation block after each iteration. In this tool one of the main focus for the model generation,
model reduction blocks and control design blocks are the robustness aspects of the underlying algo-
rithm. These need to run automatically, without human interaction in the presence of changes in the
aircraft. This comes at an expense that the individual controllers do not achieve the highest possible
performance. The other main goal of the MDO toolchain is to show the improvements of the optimiza-
tion, which involves aircraft geometry, sizing, modeling and control design simultaneously, with respect
to the reference aircraft. The HIL test and flight test block come as an auxiliary tool to validate the
developed methodologies.

The HIL tests evaluate the implementation aspects of the controllers and serve as a final step before
flight testing the controllers.

The flight test goals are twofold in case of the MDO toolchain. The main goal is to validate the control
design technology maturity. This is especially valid for the MLA, GLA and flutter suppression controllers
of the project since they not have been flight tested yet (using the model based design methodology
within FLIPASED). The other goal of the flight tests, as opposed to the MDO toolchain, is that the
resulting controllers can be fine tuned by "hand” to achieve optimal performance and provide lessons-
learnt to the designers and to the aviation community in general. In this case the robustness of the
synthesis algorithms to be able to be run in an automatic manner is not of a paramount criterion. In
addition, the fine tuning of the controllers is to be done based on the aircraft model that has been
updated via flight test data.

At the end of the cycle, the lessons learned from the HIL tests and flight tests need to be fed back to
the MDO toolchain. This is done via engineering considerations. If the HIL tests indicate that some
controller has implementation difficulties, the corresponding control design algorithm needs to be up-
dated. Similarly, if the flight tests show that a controller has lack of performance or robustness during
flight tests, the algorithms need to be adjusted as well.

21

FITPASED

10 Conclusion

The main output of the deliverable is the definition of the functional division, data flow and specific data
types exchanged among the partners in the collaborative design. This is especially important in case
of the types of models generated throughout the workflow since one of the key goals of the project is
to reduce the overall number of models in the development. The other main result is to connect the
"lessons learned” from HIL and flight test to the MDO toolchain to be able to update the underlying
algorithms if required.

The MDO tools are being integrated into the RCE framework by the respective tool owners based on the
interface definitions laid out in the deliverable. Once the integration is finished the MDO toolchain will
be tested and fine-tuned by the consortium. The present workflow is developed for the demonstrator,
but the overall methodology is almost the same for the scale-up task within WP4. The main difference
comes from the objective function and the inner convergence loop for structural sizing - aeroelastic
tailoring, what is not present in the demonstrator workflow, where only a structural check is established.

22

FITPASED

11 Bibliography

[1] Tamas Luspay, Daniel Ossmann, Matthias Wuestenhagen, Daniel Teubl, Tamas Baar, Manuel
Pusch, Thiemo M. Kier, Sergio Waitman, Andrea lanelli, Andres Marcos, Balint Vanek, and Mark H.
Lowenberg. Flight control design for a highly flexible flutter demonstrator. In AIAA Scitech 2019
Forum. AIAA, jan 2019.

[2] Balint Patartics, Gyorgy Liptak, Tamas Luspay, Peter Seiler, Béla Takarics, and Balint Vanek. Ap-
plication of structured robust synthesis for flexible aircraft flutter suppression. IEEE Transactions on
Control Systems Technology, pages 1-15, 2021.

[3] Bela Takarics, Balint Vanek, Aditya Kotikalpudi, and Peter Seiler. Flight control oriented bottom-up
nonlinear modeling of aeroelastic vehicles. In 2018 IEEE Aerospace Conference. |IEEE, mar 2018.

[4] Béla Takarics, Balint Patartics, Tamas Luspay, Balint Vanek, Christian Roessler, Julius Bartasevi-
cius, Sebastian J. Koeberle, Mirko Hornung, Daniel Teubl, Manuel Pusch, Matthias Wustenhagen,
Thiemo M. Kier, Gertjan Looye, Péter Bauer, Yasser M. Meddaikar, Sergio Waitman, and Andres
Marcos. Active Flutter Mitigation Testing on the FLEXOP Demonstrator Aircraft.

23

	Executive Summary
	Interdisciplinary Design Architectures and Status
	MDO toolchain development status
	Hardware-in-the-loop (HIL) testing status
	Flight testing status

	Aircraft Geometry and FEM Model generation
	CPACS Generation
	Geometry Model Updating
	FEM Model Generation
	Aerodynamic Model Generation
	RCE Integration

	Aeroelastic Model Generation
	Aeroelastic Model Integration - NASTRAN
	Aeroelastic Model Generation and Simulation
	Models to be generated

	Control Design Blocks
	Baseline and Flutter Suppression Control Design Blocks
	MLA and GLA Control Design Blocks

	Mission Analysis
	Hardware-in-the loop Tests
	Flight Tests
	Overall Architecture Evaluation
	Conclusion
	Bibliography

