
D1.6 Data Analytics for Model Validation

Thiemo Kier, Yasser Meddaikar, Matthias Wuestenhagen (DLR),

Charles Poussot-Vassal (ONERA), Sebastian Koeberle, Julius

Bartasevicius, Fanglin Yu (TUM), Balint Vanek, Daniel Balogh,

Tamas Luspay, Bela Takarics (SZTAKI)

GA number: 815058

Project acronym: FLIPASED

Project title: FLIGHT PHASE ADAPTIVE AEROSERVO-
ELASTIC AIRCRAFT DESIGN METHODS

Funding Scheme:H2020 ID: MG-3-1-2018

Latest version of Annex I: 1.1 released on 12/04/2019

Start date of project: 01/09/2019 Duration: 40 Months

Lead Beneficiary for this deliverable: SZTAKI

Last modified: 17/11/2022 Status: Delivered

Due date: 30/09/2021

Project co-ordinator name and organisation: Bálint Vanek, SZTAKI

Tel. and email: +36 1 279 6113 vanek@sztaki.hu

Project website: www.flipased.eu

Dissemination Level
PU Public X
CO Confidential, only for members of the consortium (including the Commission Services)

“This document is part of a project that has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 815058.”

Ref. Ares(2022)7953120 - 17/11/2022

Glossary

ASE Aeroservoelastic
CAD Computer-aided Design
CPACS Common Parametric Aircraft Configuration Schema
DLM Doublet Lattice Method
FEM Finite Element Model
SW Soft-ware
HW Hard-ware
VV Verification and Validation
GLA Gust Load Alleviation
MLA Manoeuvre Load Alleviation
MDO Multidisciplinary Design Optimization
MLA Manoeuvre Load Alleviation
PID Proportional-Integral-Derivative
RCE Remote Component Environment
HIL Hardvare-in-the-loop
FCC Flight Control Computer
TCL Tool Command Language

FLIPASED D106 Data Analytics for Model Validation V01 y2022m11d17 2

Table of contents
1 Executive Summary . 7

2 Overall Architecture and Tools to connect MDO and Testing 8

2.1 Overall Architecture and Tools of MDO Toolchain 8

2.1.1 CPACS . 8
2.1.2 RCE . 8
2.1.3 CPACS generation block . 9
2.1.4 Geometry block . 9
2.1.5 FE-model block . 9
2.1.6 Aero-model block . 9
2.1.7 Aeroelastic Model Generation and Simulation 9
2.1.8 Baseline and Flutter Suppression Control Design Blocks 9

2.2 Connection between MDO Toolchain and Testing 9

3 Structural Dynamics Model Validation . 11

3.1 NASTRAN structural dynamic model . 11

3.2 Model-updating of the -0 wings . 11

3.3 Comparison of -1 aircraft structural dynamic model with static test 12

3.4 Comparison of -1 aircraft structural dynamic model with GVTs 13

3.5 Model-updating of the -1 wing . 14

3.6 Comparison of RCE aircraft model with static test and GVT 16

3.7 Validation of the low order aeroservoelastic (ASE) model 17

4 Aerodynamics Model Validation . 19

4.1 Aerodynamics modelling tools . 19

4.1.1 AVL . 19
4.1.2 Tornado . 19
4.1.3 PyTornado . 19
4.1.4 XFLR5 . 20
4.1.5 VSPAERO . 20
4.1.6 PAWAT . 20
4.1.7 FlightStream . 20
4.1.8 STAR-CCM+ . 20

4.2 Global aerodynamic coefficients . 21

4.2.1 Lift . 21
4.2.2 Drag . 22
4.2.3 Pitching moment . 24

5 Flight Dynamics Model Validation . 25

5.1 Updating algorithm . 26

5.2 Model Validation . 28

5.3 Theil’s inequality analysis and decomposition of fit error 28

5.3.1 Model predictive capability . 29
5.4 Case Study . 30

FLIPASED D106 Data Analytics for Model Validation V01 y2022m11d17 3

5.5 Flight Test . 30

5.6 Results . 33

5.7 Proof-of-match . 38

5.8 Conclusion . 39

6 Control System Design and Performance Validation . 40

6.1 Baseline control structure . 40

6.2 Baseline control design . 41

6.2.1 Parameter Tuning . 42
6.3 Baseline control flight test results . 42

6.3.1 Augmented Mode Flight Tests . 43
6.3.2 Altitude Tracking and Autothrottle Tests 44
6.3.3 Course Angle Flight Test . 45
6.3.4 Preparation for Flutter tests . 45

7 Validation of data driven wingshape estimation by analytic models 53

7.1 T-FLEX demonstrator dynamic model . 53

7.2 Model based estimation of flexible dynamics . 55

7.2.1 LPV model . 55
7.2.2 LPV-based Kalman filtering . 55

7.3 Data-driven estimation of flexible dynamics . 56

7.3.1 KalmanNet architecture . 56
7.3.2 Training data . 57
7.3.3 Training details . 58

7.4 Results . 59

7.4.1 LPV-based EKF . 59
7.4.2 KalmanNet . 60

7.5 Data Driven vs. Model Based Estimation Conclusion 61

8 Conclusion . 63

9 Bibliography . 64

FLIPASED D106 Data Analytics for Model Validation V01 y2022m11d17 4

List of Figures
1 MDO Toolchain for demonstrator T-FLEX . 8
2 Toolchains developed in FLiPASED . 10
3 Displacement vs load at tip of the wing from static tests (-0 wing) 12
4 Span-wise displacement of wing under tip load for the updated model (-0 wing) 12
5 MAC matrix: GVT vs stiffness-updated FE model of the -0 aircraft 13
6 Displacement vs load at tip of the wing from static tests (-1 wing) 13
7 Span-wise displacement of wing under tip load (-1 wing) 13
8 Torsion vs load at tip of the wing from static tests (-1 wing) 14
9 Span-wise torsion of wing under tip load (-1 wing) . 14
10 -1 aircraft 1n wing in-plane mode . 15
11 Span-wise displacement of wing under tip load (-1 wing) 15
12 Span-wise torsion of wing under tip load (-1 wing) . 15
13 Comparison of eigen frequencies of the flexible modes: GVT vs FE model vs updated

FE model of the -1 aircraft (in - i nodes in the mode, s - symmetric, a - antisymmetric) . . 16
14 Span-wise bending of wing under tip load (-1 wing RCE model) 16
15 Span-wise bending of wing under tip load (-1 wing RCE updated model) 16
16 Comparison of eigen frequencies of the flexible modes: GVT vs RCE FE model vs up-

dated RCE FE model of the -1 aircraft (in - i nodes in the mode, s - symmetric, a -
antisymmetric) . 17

17 Comparison of pole trajectories of the ASE models: Legacy Flexop model vs RCE gen-
erated model of the -1 aircraft . 18

18 T-FLEX demonstrator modelled in different tools. 21
19 Lift coefficient CL with respect to the angle of attack α. 22
20 Lift coefficient CL with respect to the angle of attack α. 22
21 Spanwise normalized lift distribution for α = 2deg. The local lift coefficients are normal-

ized with respect to the maximum local lift coefficient of the same tool. 23
22 Inviscid drag coefficient CDi with respect to the angle of attack α. 24
23 Total drag coefficient CD with respect to the angle of attack α. 24
24 Pitching coefficient Cm with respect to the angle of attack α 24
25 Overview of the model structure, updating algorithm and validation process [38] 26
26 Location of accelerometers (IMUs) on FLiPASED aircraft [38] 30
27 Elevator deflections used for pushover–pull-ups . 32
28 Fit error distribution between flight test and updated model data for each output (Number

of test sets = 3) . 33
29 Breakdown of the fit error into proportions of bias, variance, and covariance (Number of

test sets = 3) . 34
30 Pitch angle θ . 36
31 Pitch rate (q IMU-Fuse) . 36
32 Angle of attack α . 36
33 Vertical acc. az, IMU-Fuse . 36
34 Barometric altitude hbaro . 37
35 Total pressure Ptotal . 37
36 A subset of vertical accelerations az,IMU recorded by six IMUs on the wings 37
37 Measured elevator deflections and trim values from flight test for model validation 38
38 Fit error distribution between outputs from validation test and outputs provided from up-

dated model for proof-of-match procedure . 39
39 Structure of the baseline controller . 40
40 Comparison of different lateral inner loop controllers during Flight Test 11 46

FLIPASED D106 Data Analytics for Model Validation V01 y2022m11d17 5

41 Flight test evaluation of the longitudinal control laws . 47
42 Sideslip loop performance during Flight Test 11 . 47
43 Altitude reference tracking during FT12 . 48
44 Comparison of different autothrottle controllers during FT12 48
45 Speed tracking and the corresponding RPM signal . 49
46 Course angle tracking performance during reference step change and coordinated turn . 49
47 Coordinated turn . 50
48 Horserace flight pattern . 50
49 Course angle for full circle tests with increasing speed during FT16 51
50 Full circle trajectories with increasing speed during FT16 51
51 Increasing speed during FT16 . 52
52 Demonstrator control surfaces and IMU locations . 54
53 KalmanNet pipeline . 57
54 LPV-based EKF results . 59
55 Linear (left) and convolutional (right) architecture training graphs 60
56 KalmanNet results with linear architecture . 60
57 KalmanNet results with convolutional architecture . 61

FLIPASED D106 Data Analytics for Model Validation V01 y2022m11d17 6

1 Executive Summary

The following results are based on preliminary findings.

The deliverable ”D1.6 Data Analytics for Model validation” focuses on comparing results and findings
coming from different sources. The main reason to have specific assessment of results coming from
theoretical models or experimental tests is to build confidence in the developed tools and methods. The
data from flight tests will serve as a baseline to validate structural dynamics, aerodynamics, controls
and avionics instrumentation models. Analysis tools with standard validation routines will be provided
in Nastran and Matlab environment for structural dynamics and controls respectively. These tools along
with Python based data science software will be used within the project and the underlying theory along
with interfaces of these tools are documented in D1.6.

The project goal, set in the proposal within Task 1.4 Data Analytics for Model Validation (SZTAKI,
DLR,ONERA,TUM) aims at: ”Significant part of the engineering effort is devoted in research projects
to provide the adequate interface for tools and methods developed in prior projects. These tools and
the corresponding analysis steps with their interfaces will be part of the open data initiative, to pro-
vide seamless access to the core problems with adequate analysis tools to the research community.
The data from flight tests in the early part of the project, provided by re-using the demonstrator plat-
form developed within FLEXOP, will serve as a baseline to validate structural dynamics, aerodynamics,
controls and avionics instrumentation models. Analysis tools with standard validation routines will be
provided in Nastran and Matlab environment for structural dynamics and controls respectively. During
the second half of the project these tools will be expanded to address the attainment of MDO criteria,
during the development cycle – including the functions of weight reduction, fuel efficiency and gust load
alleviation. Based on the large amount of simulation and experimental data both analytical and data
driven approaches will be pursued for model predictive control, function shape fitting by support vector
machines and deep learning, parameter search by Monte Carlo methods, and more. The project will
also use Python based data science software, including numpy, scipy, pandas, scikit-learn, Tensorflow,
Keras, matplotlib and many more, in Jupyter notebooks, as the emerging de facto standard sharing and
collaboration tool for data scientists.”

FLIPASED D106 Data Analytics for Model Validation V01 y2022m11d17 7

2 Overall Architecture and Tools to connect MDO and Test-
ing

This section describes the overall structure of MDO toolchain and the tools used there. A short intro-
duction regarding each blocks is also given. The connection between the MDO, HIL test and flight test
toolchains is also explained in this section.

2.1 Overall Architecture and Tools of MDO Toolchain

The MDO toolchain is the main block in this case which has its own optimization and gets back to
the CPACS generation block after each iteration. The main goal of the MDO toolchain is to show the
improvements of the optimization, which involves aircraft geometry, sizing, modeling and control design
simultaneously, with respect to the reference aircraft. Figure 1 shows the overall architecture of MDO
toolchain.

Figure 1: MDO Toolchain for demonstrator T-FLEX

The following sections will give a brief introduction of function blocks in MDO toolchain and the used
standard tools. For more informations please refer to previous deliverables 1.2, 1.4, 2.2 and 4.1.

2.1.1 CPACS
The data model CPACS has been introduced and developed at the German Aerospace Center (DLR)
since 2005. CPACS is implemented in XML. Making use of the hierarchical representation of data in
XML the structure of CPACS mainly follows a top-down approach which decomposes a generic concept
(e.g., an aircraft) into a more detailed description of its components. This originates from the conceptual
and preliminary design of aircraft, where the level of detail is initially low and continues to increase as
the design process progresses. The hierarchical structure furthermore promotes the simplicity of the
exchange format which is required in collaborative design environments so that the various stakeholders
can easily append their results. CPACS serves as the data model in this toolchain.

2.1.2 RCE
DLR’s Remote Component Environment (RCE) [4] is an open-source software environment for defining
and executing workflows containing distributed simulation tools by integrating them into a peer-to-peer

FLIPASED D106 Data Analytics for Model Validation V01 y2022m11d17 8

network. In this toolchain, RCE is used as the integration platform.

2.1.3 CPACS generation block
CPACS generation block, which is the first block in the MDO toolchain, aims to generate the first version
of CPACS file with a Python script.

2.1.4 Geometry block
Geometry block aims to update the Catia model based on the incoming CPACS file from the upstream
CPACS generation block.

2.1.5 FE-model block
The function of the FE-model block is meshing the geometry model and assigning structural properties.
A Splining model, which couples the structural and aerodynamic model, is also generated in this block.

2.1.6 Aero-model block
The aero-model block takes the geometry definition in CPACS file as input, generates the DLM aerody-
namic model, and exports it to a Nastran bdf file.

2.1.7 Aeroelastic Model Generation and Simulation
Based on the aerodynamic, structural and spline grid information as well as mass and stiffness matrices,
simulink model will be generated in this block and will be used for control synthesis design.

2.1.8 Baseline and Flutter Suppression Control Design Blocks
This block takes the nonlinear Simulink model with the configuring struct file from DLR-SR as the input
files and generates two models in this case, one for the flutter control synthesis block and one for the
baseline controller. Based on the model the flutter suppression controller and the baseline controller
are generated. Once the flutter suppression and baseline control design blocks finish the synthesis, a
frequency domain analysis will be ran to assesses the performance of the two controllers acting together
simultaneously, to check the robustness margins and flutter margins of the resulting controllers.

In this MDO toolchain one of the main focus for the model generation, model reduction blocks and
control design blocks are the robustness aspects of the underlying algorithm. These need to run au-
tomatically, without human interaction in the presence of changes in the aircraft. This comes at an
expense that the individual controllers do not achieve the highest possible performance. This is also
where testing comes into play to validate the developed methodologies.

2.2 Connection between MDO Toolchain and Testing

The HIL test and flight test blocks serve as auxiliary tools to validate the developed methodologies, as
shown in figure 2.

The HIL tests evaluate the implementation aspects of the controllers and serve as a final step before
flight testing the controllers.

The flight test goals are twofold in case of the MDO toolchain. The main goal is to validate the control
design technology maturity. This is especially valid for the MLA, GLA and flutter suppression controllers
of the project since they have not been flight tested yet (using the model based design methodology
within FLiPASED). The other goal of the flight tests, as opposed to the MDO toolchain, is that the
resulting controllers can be fine tuned by ”hand” to achieve optimal performance and provide lessons-
learnt to the designers and to the aviation community in general. In this case the robustness of the

FLIPASED D106 Data Analytics for Model Validation V01 y2022m11d17 9

synthesis algorithms to be able to be run in an automatic manner is not of a paramount criterion. In
addition, the fine tuning of the controllers is to be done based on the aircraft model that has been
updated via flight test data.

At the end of the cycle, the lessons learnt from the HIL tests and flight tests need to be fed back to the
MDO toolchain. This is done via engineering considerations. If the HIL tests indicate that some con-
troller has implementation difficulties, the corresponding control design algorithm needs to be updated.
Similarly, if the flight tests show that a controller has lack of performance or robustness during flight
tests, the algorithms need to be adjusted as well.

Mission
Analysis

CPACS

Geometry
(CAD)

Loads
analysis

Ctrl Design FCS
HQ assessment

Flutter

Aero model

Mass Model payload,
fuel, add. system

mass

FEM (NASTRAN)
Structural sizing

Model Integr.

HIL model

FCC

HIL test

Flight test Lessons learnt

Pilot training

Ground test,
GVT

MDO toolchain

HIL tests

Flight tests

Figure 2: Toolchains developed in FLiPASED

More details regarding toolchain validation will be given in the following sections.

FLIPASED D106 Data Analytics for Model Validation V01 y2022m11d17 10

3 Structural Dynamics Model Validation

The tasks related to structural dynamics of the aircraft models are led by DLR-AE, but contributions are
made by ONERA, TUM, SZTAKI and DLR-SR as well.

The main steps regarding the task are:

• structural model development and GVT based update

• Model comparison and fine tuning for RCE toolchain based and GVT based model matching

• Operational modal analysis based model update during flight tests and its connection how this
feeds back to NASTRAN models

• Description of used tools and how they can we standardized

In this chapter, a summary of the structural dynamics model and the model-updating activities pertaining
to its update are described.

3.1 NASTRAN structural dynamic model

The structural dynamic models of the T-Flex aircraft are developed using a modelling toolchain estab-
lished during FLEXOP and FLIPASED. In total, three pairs of wings are designed, manufactured and
tested on the UAV test-bench:

(i) wings -0 - a pair of wings optimized using balanced-symmetric type of laminates serving as the
reference wing

(ii) wings -1 - a pair of flutter wings designed to trigger flutter within the test-regime, whose flight
envelope will then be extended using active flutter control

(iii) wings -2 - a pair of wings optimized using unbalanced composite laminates, to demonstrate pas-
sive load alleviation through aeroelastic tailoring

The structural FE models for the wing pairs -0 and -2 are generated using an in-house model generator
ModGen at DLR-AE [17], while those of the -1 wing are obtained from a CAD-FEM toolset at TUM.
The wing models are integrated to the fuselage and empennage models generated during FLEXOP at
DLR-AE. The fuselage and empennage models are also generated using ModGen [17].

3.2 Model-updating of the -0 wings

A ground-test campaign [35] involving structural tests and ground vibration tests (GVT) has been per-
formed on the T-Flex aircraft. An update of the FE model of the -0 wing has been performed based
only on experimental data from static tests, while an update using data from the GVT is being studied
at present.

The static test was performed with the main objective being the assessment of the stiffness properties
of the wing and validation of the pertinent structural models developed. Figure 3 shows the deflection
of the wing-tip as a function of the applied tip-load. Shown in Figure 4 is the span-wise displacement

FLIPASED D106 Data Analytics for Model Validation V01 y2022m11d17 11

50 0 50 100
tip (mm)

2

0

2

4
lo

ad
 (k

g)
Experimental points
Linear fit

Figure 3: Displacement vs load at tip of the wing
from static tests (-0 wing)

0 1 2 3
span-section (m)

0

10

20

30

40

50

60

tip
 (m

m
)

NASTRAN (initial)
NASTRAN (updated)
Experimental

Figure 4: Span-wise displacement of wing under
tip load for the updated model (-0 wing)

of a wing-half subjected to 3kg load at the tip, comparing the static tests and the initial FE model.
The observed difference in the displacement could be attributed to several factors including modelling
assumptions and simplifications, manufacturing deviations, material scatter, etc.

The present version of the model-updating is performed by introducing a knock-down on the engineering
stiffness (E1,E2,G12) in the FE model of the wing and in the clamp used for the wing attachment. An
alternative approach through the inclusion of tuning-beams and optimizing its properties has also been
attempted. A comparison of the frequencies between this stiffness-updated FE model and the GVT
results is shown in Table 1. Also shown is the modal assurance criterion (MAC) which is an indicator
of similarity between mode shapes from two sets in Figure 5. It is seen that the FE model captures the
out-of-plane bending behaviour of the wing well. On the other hand, the in-plane behaviour of the wing
and the stiffness and mass modelling of the fuselage and empennage need to be investigated in more
detail.

The stiffness-updated structural model serves as the basis for generating a next iteration of ASE mod-
els for controller synthesis. In the next steps, a more refined approach at model-updating will need
to be performed considering other possible sources of deviation such as an improved modelling of
wing-fuselage joint, localized stiffness-updates and updated mass-modelling while utilizing also the
frequencies and mode-shapes obtained from the GVT.

3.3 Comparison of -1 aircraft structural dynamic model with static test

Static test of -1 wing was conducted in the FLEXOP project at the same time as -0 and -2 wing to verify
the stiffness properties of manufactured wing and validate the FE-Model developed during design stage.
Figure 6 shows wing tip deflection at different load cases and their linear fit. Linear stiffness property
can be clearly seen in the figure 6. Because of measurement error, there is zero drift when the load
was increased from zero and decreased to zero again.

FE-model is elaborated to replicate the static test. Figure 7 shows the comparison of span-wise dis-
placement of wing under 5 kg tip load between simulation and test. The manufactured wing is more
flexible than it modelled. It shows same trend as the -0 and -2 wing. The deviation between simulation
and test is around 12%, without consideration of zero drift in the test.

Same investigation was made for the torsional load cases. Figure 8 shows the linearity of the model

FLIPASED D106 Data Analytics for Model Validation V01 y2022m11d17 12

Mode GVT (Hz) FE (Hz) ∆f (%)
2n wing bending-s 3.37 3.27 -2.9
3n wing bending-a 8.28 8.35 0.9
1n wing inplane-a 8.88 18.45 -
4n wing bending-s 12.12 11.86 -2.1
tail rock-a 17.32 - -
1n wing inplane-s 19.26 18.09 -6.1

Table 1: Comparison of eigen frequencies of the flexible modes:
GVT vs stiffness-updated FE model of the -0 aircraft (in - i nodes
in the mode, s - symmetric, a - antisymmetric)

Figure 5: MAC matrix: GVT vs stiffness-
updated FE model of the -0 aircraft

Figure 6: Displacement vs load at tip of the wing from
static tests (-1 wing)

Figure 7: Span-wise displacement of wing under tip
load (-1 wing)

under the torque loads. Figure 9 shows the comparison of span-wise torsion of wing under 2 kg torque
load between simulation and test. There are only 0.1 deg differences. Taking the measurement error
into account, the results match quite well.

3.4 Comparison of -1 aircraft structural dynamic model with GVTs

The -1 wing FE model is generated using a CATIA - Hypermesh toolset at TUM. The model is of a very
high fidelity comprising of detailed elements for the structural as well as non-structural entities such as
on-board systems.

A comparison of the eigen frequencies of the -1 aircraft model (without update) and the GVT is shown in
Table 2. It is seen that a generally good agreement between the FE model and the GVT results exists.
Two observations can be made with respect to this comparison.

The third flexible mode (3n wing bending-a) has the largest different in the experimental results with
respect to the GVT. Given that this wing bending mode participates in the critical flutter mechanisms

FLIPASED D106 Data Analytics for Model Validation V01 y2022m11d17 13

Figure 8: Torsion vs load at tip of the wing from static
tests (-1 wing)

Figure 9: Span-wise torsion of wing under tip load (-1
wing)

Mode GVT (hz) FE (hz) ∆f (%)
2n wing bending-s 2.94 2.91 -1.02
1n wing in-plane-a 7.01 – –
3n wing bending-a 7.57 8.15 7.66
wing torsion-s 10.27 10.50 2.24
wing torsion-a 10.73 10.61 -1.12
4n wing bending-s 12.13 12.11 -0.16
2n wing in-plane-s 15.07 15.06 -0.07

Table 2: Comparison of eigen frequencies of the flexible modes: GVT vs FE model of the -1 aircraft (in - i nodes
in the mode, s - symmetric, a - antisymmetric)

of the -1 aircraft, it is important to update the wing FE model with respect to the frequency of this
concerned mode. Secondly, the second flexible mode (named 1n wing in-plane-a) which is observed
during the GVT but not in the FE simulations appears to involve a relative motion between the fuselage
and wing as shown in Figure 10. Such a mode is expected due to some free-play or softness in the
attachment between the fuselage and wings, which is not tuned for in the FE models where an idealized
attachment is assumed. In order to be able to simulate this mode, one approach would be to tune soft
springs at the wing-fuselage interface such that the mode is present in the simulation. Both the FE
model update mentioned in the former and a study on how to introduce the concerned mode discussed
in the latter are being studied at present. An approach using so-called tuning beams is planned for this
task.

3.5 Model-updating of the -1 wing

The model updating of -1 wing is first conducted with static test data. Knock-down factor is applied on
the engineering stiffness (E1,E2,G12) of the wing skin and spar. The model updating is based on the
3 kg bending load case. As you can see from Figure 11, the simulation result matches quite well with
test data. The deviation with the test result is reduced to 2mm within the range of test error. Figure
12 shows the simulation result of 2kg torsional load case with updated model. There are no noticeable
differences as expected, because the parameter is updated according to the bending load case.

FLIPASED D106 Data Analytics for Model Validation V01 y2022m11d17 14

Figure 10: -1 aircraft 1n wing in-plane mode

Figure 11: Span-wise displacement of wing under tip
load (-1 wing)

Figure 12: Span-wise torsion of wing under tip load (-1
wing)

After model updating, a modal analysis is conducted with updated model. Figure 13 shows comparison
of eigenfrequencies between GVT, FEM and updated FEM. Only the 3n asymmetric wing bending is
improved, all other modes become worse. This is due to the fact that updating with the static test, the
engineering stiffness (E1) is tuned down. This results in tuned down eigenfrequencies. Next step is to

FLIPASED D106 Data Analytics for Model Validation V01 y2022m11d17 15

use tuning beams locally to improve the 3n bending while not destroying the other mode shapes.

Figure 13: Comparison of eigen frequencies of the flexible modes: GVT vs FE model vs updated FE model of the
-1 aircraft (in - i nodes in the mode, s - symmetric, a - antisymmetric)

3.6 Comparison of RCE aircraft model with static test and GVT

The initial model generated with MDO toolchain was prepared to replicate the static test set up. The
results can be seen from figure 14 that the RCE model is way stiffer than the manufactured. Using the
same approach as for -1 wing updating, a knock-down factor was applied to the engineering stiffness of
wing spar and skin. The figure 15 shows the wing bending results with updated RCE model. The wing
bending is much closer to the static test results.

Figure 14: Span-wise bending of wing under tip load (-1
wing RCE model)

Figure 15: Span-wise bending of wing under tip load (-1
wing RCE updated model)

A modal analysis is also conducted for the initial RCE model and updated RCE model. The results can
be seen in the figure 16. After the update, all the modes listed are improved.

FLIPASED D106 Data Analytics for Model Validation V01 y2022m11d17 16

Figure 16: Comparison of eigen frequencies of the flexible modes: GVT vs RCE FE model vs updated RCE FE
model of the -1 aircraft (in - i nodes in the mode, s - symmetric, a - antisymmetric)

3.7 Validation of the low order aeroservoelastic (ASE) model

The last step is to validate the accuracy of the low order ASE model that is constructed in the modeling
block of the RCE framework. This model serves as the basis for the automatic baseline and flutter
suppression control design algorithms. The model is a set of linear time invariant (LTI) models that are
obtained form the nonlinear model by Jacobian linearization at airspeed values between 38 and 64 m/s.
The model needs to capture the low frequency dynamics of the aircraft for the baseline control design
and the flutter modes for the flutter suppression design.

The base model is the low order model of the Flexop aircraft that is described in [23]. The pole map
trajectories (as function of the airspeed) of the base model and the RCE generated models are shown
in Figure 17.

The plots show good match between the legacy Flexop and the RCE generated model. The pole
trajectories show similar trends and the interdependency between them is also very similar between
the two modeling frameworks.

FLIPASED D106 Data Analytics for Model Validation V01 y2022m11d17 17

-10 -5 0 5 10
-100

-50

0

50

100

Legacy
RCE

Pole-Zero Map

Real Axis (seconds -1)

Im
ag

in
ar

y
A

xi
s

(s
ec

on
ds

-1
)

Figure 17: Comparison of pole trajectories of the ASE models: Legacy Flexop model vs RCE generated model of
the -1 aircraft

FLIPASED D106 Data Analytics for Model Validation V01 y2022m11d17 18

4 Aerodynamics Model Validation

The Deliverable D3.2 – Flight Test Report Phase 1 described the taxi tests, flight tests and aerodynamic
analysis performed within years 2020 and 2021. An issue is reported in the deliverable about the actual
aircraft producing significantly less lift than was initially modelled. An almost constant lift coefficient
offset of around 0.2 can be observed, which results in 35-45 percent lift loss in the 2-4 deg angle of
attack region. FT5 and FT7 data do align in the same trend. Accordingly, an investigation was launched
not only in the available flight test data, but also in aerodynamic modelling tools. The further findings
from the flight test data will be presented in the Deliverable 3.6 – Flight Test Report Phase 2.

In order to select an aerodynamic tool which models the aerodynamic characteristics of T-FLEX cor-
rectly, a comparison study of different aerodynamic tools was conducted.

In the mean time, MDO toolchain poses additional requirements on the tools regarding the simulation
time and automatic execution.

Investigated tools includes the low order aerodynamic tools, Athena Vortex Lattice (AVL), XFLR5, Py-
Tornado, Tornado, VSPAERO, PAWAT, FlightStream and high fidelity tool STAR-CCM+.

4.1 Aerodynamics modelling tools

This section will give introduction to the investigated tools. For more details please refer to the paper
[44].

4.1.1 AVL
AVL is a program for performing aerodynamic analysis of rigid aircraft of arbitrary configurations [8]. It
uses the VLM method to model the lifting surfaces. Because of an intrinsic limitation of VLM, AVL is
only suitable for inviscid calculation at small angles of attack and sideslip.

4.1.2 Tornado
Tornado is a Vortex Lattice Method for linear aerodynamic wing design applications in conceptual air-
craft design or in aeronautical education [25]. The method is built in MATLAB [1] and is based on the
description as provided by Moran [27].

The VLM implementation in Tornado ignores the thickness effects of the airfoil, but includes the camber.
In Tornado, modelling of control surfaces is possible. Experimental functions that generate a Trefftz-
plane analysis can be used. Different options for mesh creation (linear panel distribution, cosine panel
distribution, etc.) are available. A graphical interface is available which can plot coefficients of interest,
display geometries and mesh.

Initially, Tornado was designed only to include linear aerodynamics. However, the code has been
updated to include viscous effects as well [5].

If required, stability derivatives can be calculated using central-difference approximation around the trim
condition. It is also possible to calculate trimmed polars.

4.1.3 PyTornado
PyTornado is an aerodynamic tool for conceptual aircraft design. Short computation times make it
possible to easily obtain estimates of aerodynamic loads and to benchmark different concepts [11]. Al-
though a similar name as Tornado, PyTornado has been implemented from scratch within the European
research project AGILE. A Vortex Lattice Method is implemented in this code. It has a user interface,

FLIPASED D106 Data Analytics for Model Validation V01 y2022m11d17 19

pre- and post-processing in Python and a calculation core routine in C++ [26], which guarantees a user
friendly interface and computational efficiency. It can be used as a standalone aerodynamic solver or
can be integrated into a MDO toolchain. The deformation feature, which is under development, could
be potentially used for aeroelastic analysis.

4.1.4 XFLR5
XFLR5 is a software tool designed specifically with model sailplanes in mind [6][7]. Therefore, it focuses
on wings operating at low Reynolds numbers. The tool uses XFoil [9] (XFoil v6.99 since XFLR5 v6.55)
to calculate the 2D aerodynamics of an airfoil. Non-linear Lifting Line Theory (based on the NACA
technical note 1269 [34]), Vortex Lattice Method with quadrilateral rings (as recommended by Katz and
Plotkin [14]) or 3D Panel Method (based on Maskew [22]) can be used for 3D wing and tail analysis.
Body analysis is not recommended by the author [7].

Unlike the usual VLM solvers, the VLM method implemented in XFLR5 provides a viscous drag cor-
rection. In such case, lift-related characteristics (lift distribution, induced drag) are kept inviscid and
after local lift distribution is calculated, viscous drag correction using 2D airfoil polars is applied. The
lift distribution is not changed. This method is also used during this study. However, the author of the
software raises awareness that such correction is not scientifically sound, as using 2D polars ignores
any spanwise effects [7].

4.1.5 VSPAERO
VSPAERO [15] is the aerodynamic analysis tool integrated within the conceptual aircraft design package
OpenVSP [29]. The tool has two methods available - the Vortex Lattice Method with a simple stall
prediction methodology (not used in this study) and a 3D Panel method [16]. Propellers can be included
in the simulation. The tool also incorporates the possibility to calculate the parasite drag using the
component build-up method. In the current study, only the VLM method is used.

4.1.6 PAWAT
The Preliminary Design Tool for Propeller-Wing Aerodynamics (PAWAT) is an aerodynamic tool for the
conceptual design of aircraft [36]. The calculation of the steady state lifting surface aerodynamics in
PAWAT is based on a modified three-dimensional nonlinear lifting line theory with a fixed wake model
employing nonlinear airfoil data to model nonlinear and viscous effects to a certain extent [36]. PAWAT
is also capable of modelling propellers and it allows investigations of the interaction effects between
wing and propeller.

The method is built in MATLAB [1]. The description of the lifting line method used is described by
Phillips and Snyder [30].

4.1.7 FlightStream
FlightStream is a novel surface vorticity solver capable of using structured or unstructured surface
meshes. As a vorticity-based solver, the code can be expected to be substantially more robust and
stable compared to pressure-based potential-flow solvers and less sensitive to surface perturbations,
and it also allows the use of coarser meshes with an acceptable level of fidelity [28].

To account for viscous effect, integral boundary layer was implemented in FlightStream and was coupled
with inviscid solver via displacement of the inviscid boundary equal to the displacement thicknesses of
the local boundary layers. More features like prediction of flow separation and stall characteristics are
also enabled by this implementation.

4.1.8 STAR-CCM+
Simcenter STAR-CCM+ is a multiphysics computational fluid dynamics (CFD) software. In this study, it
is used to provide the reference data for comparison.

FLIPASED D106 Data Analytics for Model Validation V01 y2022m11d17 20

One has to emphasize that most of the tools simulated the wing and tail (Figure 18). Fuselage was
included only in simulations of STAR-CCM+ and FlightStream. A study was done with STAR-CCM+ to
investigate the influence of the fuselage on the spanwise lift distribution. A small influence was noted at
low angles of attack. However, at high angles of attack the fuselage does change the flow at the wing
root.

((a)) XFLR5. ((b)) OpenVSP.

((c)) PAWAT. ((d)) FlightStream.

Figure 18: T-FLEX demonstrator modelled in different tools.

4.2 Global aerodynamic coefficients

This section will compare the aerodynamic tools regarding the global aerodynamic coefficients. For
more details please refer to the paper [44].

4.2.1 Lift
The lift coefficient data is plotted with respect to the angle of attack in Figure 19 as well as in Figure 20
for the linear part of the slope. The lift curve slope coefficients CLα

and zero angle lift coefficients CL0

are shown in Table 3.

Significant reduction in lift is apparent when comparing the turbulent simulations to Euler simulations.
This is expected, as the viscous boundary layer on the top surface of the wing reduces the effective
camber line, therefore reducing the aerodynamic angle of attack. Interestingly, most of the tools show
better alignment with the turbulent simulations than with the inviscid ones, even though only PAWAT
and FlightStream take viscosity into account when calculating lift.

When only the linear part of the lift curve is concerned, the calculated curve slope agreed with each

FLIPASED D106 Data Analytics for Model Validation V01 y2022m11d17 21

Figure 19: Lift coefficient CL with respect to the angle of
attack α.

Figure 20: Lift coefficient CL with respect to the angle of
attack α.

Table 3: Comparison of lift curve slope CLα , zero angle lift coefficient CL0 , minimum drag coefficient CDmin , pitching
moment curve slope Cmα and zero angle pitching moment coefficient Cm0 for different aerodynamic modelling tools.

Tu
rb

ul
en

t

E
ul

er

Fl
ig

ht
S

tr
ea

m

PA
W

A
T

To
rn

ad
o

A
V

L

X
FL

R
5

V
S

PA
E

R
O

P
yT

or
na

do

CLα
0.106 0.111 0.103 0.107 0.105 0.104 0.104 0.104 0.104

CL0 0.206 0.248 0.214 0.180 0.122 0.185 0.198 0.205 0.215
CDmin 0.020 0.005 0.015 0.016 0.001 0.002 0.015 0.012 0.002
Cmα

-0.027 -0.028 -0.030 -0.047 -0.050 -0.032 -0.032 -0.026 -0.030
Cm0 0.132 0.141 0.117 0.103 0.193 0.214 0.147 0.128 0.159

other. The zero angle of attack lift shows deviations among tools. Tornado differs most from the other
tools. Taking into account that all the tools are meant for preliminary design phase, the differences
between them could be categorised as being insignificant.

The nonlinear part of the curve is predicted by both PAWAT and FlightStream. Even at high angle of
attack, the lift curve from FlightStream matches quite good with CFD turbulent result. However, as no
CFD simulations above 14 degrees were done, the CLmax could not be estimated.

The spanwise normalized lift distribution for α = 2deg is plotted in Figure 21. As only the shape of the
distribution is of importance here, the local lift coefficients are normalized with respect to the maximum
local lift coefficient for the same tool.

The normalized lift distributions between the turbulent and Euler simulations are almost identical. The
estimated maximum local lift location is similar for all the tools. The overall shape is very similar with
some discrepancies at the root and tip areas. The differences between the STAR-CCM+ results and the
other tool results at the wingtip might be due to the poor discretization when extracting the lift distribution
from STAR-CCM+.

4.2.2 Drag
Figure 22 shows the inviscid drag polar. While all the VLM tools and panel-based method FlightStream
agree mainly, the differences compared with the STAR-CCM+ Euler simulation are noticeable even at

FLIPASED D106 Data Analytics for Model Validation V01 y2022m11d17 22

Figure 21: Spanwise normalized lift distribution for α = 2deg. The local lift coefficients are normalized with respect
to the maximum local lift coefficient of the same tool.

low lift coefficient.

One has to note that the inviscid drag extracted from STAR-CCM+ here is the pressure drag component
acting on the aircraft. Strictly speaking, this is not equal to the induced drag by definition. The separation
of induced and profile drag from CFD is not straight-forward, and if Euler simulations are used the
induced drag due to viscous effects are then ignored. Nowadays there exist some methods to extract
these two drag components from CFD [19], but they were not implemented at the time of writing this
report.

The total drag coefficient shown in Figure 23 includes both viscous and inviscid drag. Significant differ-
ences can be seen in between the tools that correct for viscous drag (STAR-CCM+ (turbulent), Flight-
Stream, PAWAT, XFLR5, VSPAERO) and the ones that do not (Tornado, AVL, PyTornado).

Different methods were used to correct the viscous drag in different software tools. Variation of viscous
drag is clearly visible in the Figure 23.

Both PAWAT and XFLR5 correct viscous drag based on 2D airfoil polar data. For XFLR5, 2d viscous
drag is interpolated from local wing lift coefficient. The interactive boundary layer, which is a coupling
method between potential flow and viscous flow on surfaces, is not implemented in the VLM available
in XFLR5 [6]. The consequence of underestimation of viscous drag is confirmed in the Figure 23.

In PAWAT, equations are established for wing segments based on the aerodynamic force derived from
three-dimensional vortex lifting law and the aerodynamic force derived from nonlinear airfoil character-
istics of the segment and the segment area [36]. Iterative procedure is needed to solve the equations.

FLIPASED D106 Data Analytics for Model Validation V01 y2022m11d17 23

Figure 22: Inviscid drag coefficient CDi with respect to
the angle of attack α.

Figure 23: Total drag coefficient CD with respect to the
angle of attack α.

Total drag coefficient from PAWAT matches quite well with CFD data.

In FlightStream, integral boundary layer is coupled with inviscid surface solver to account for viscous
drag. Even though, the total drag seems to be underestimated.

4.2.3 Pitching moment
The pitching moment coefficient with regard to angle of attack is shown in Figure 24. The results
predicted by STAR-CCM+ Euler simulation and turbulent simulation are almost identical, except that at
the high angle of attack, turbulent simulation shows a pitch up trend. FlightStream shows a similar pitch
up trend as turbulent simulation, even though an offset of the curve is visible.

The pitching moment coefficients predicted by VSPAERO, XFLR5 and PyTornado match quite good
with the CFD results. The results from PAWAT, AVL and Tornado show noticeable deviation to the
reference.

Figure 24: Pitching coefficient Cm with respect to the angle of attack α .

FLIPASED D106 Data Analytics for Model Validation V01 y2022m11d17 24

5 Flight Dynamics Model Validation

The flight dynamics of a flexible air vehicle is characterised by an aero(servo)elastic (ASE) model that
considers the interaction of aerodynamics, structural dynamics, rigid body dynamics, and control laws
which comprise interdisciplinary aircraft modelling. These subsystems can be independently modelled
using a theoretical approach, and experimental results from various ground and flight tests can be
incorporated into the models. Before flight tests can be conducted safely and effectively, a number of
ground tests must be performed. The static and ground vibration tests (GVT) are essential for evaluating
and improving the accuracy of the numerical models used during the aircraft design phase. The results
of ground testing, for instance, are used to update and validate the Finite Element (FE) model that
represents the structural dynamic part of the aircraft model. Similarly, an aerodynamic model can
be generated using computational fluid dynamics (CFD) simulations or panel methods derived from
potential theory, typically representing quasi-steady and unsteady aerodynamics, which can be partially
updated using limited data from wind tunnel-tests, which are often used in the aircraft design and
development phase for configuration optimization. Compared to completely flight mechanical models
representing rigid body aircraft dynamics, which are adequately represented by low-order dynamics,
and purely structural models, which are adequately represented by higher-order dynamics, ASE models
encompass both the low- and high-frequency range.

For the validation of the flight dynamics model, an updating methodology for correcting of the numerical
system matrices A, B, C and D of the linear discrete-time state-space models of the flexible aircraft
has been developed combining the phenomenological and behavioral model structures. The proposed
approach updates the system matrices using the measured input-output data from flight test and the
initial state-space model of the flexible aircraft which is derived from the linearization of the nonlinear
first-order differential equations describing the aircraft motion. The key feature of the proposed ap-
proach is that updating can be executed in a single step with multiple data bases from different flight
tests with nearly-identical initial conditions, resulting in a more physically realistic correction of the sys-
tem matrices. The updating method addresses linear estimation problems which allows an manageable
implementation with fast execution avoiding optimization problems for approximation of solutions of non-
linear differential equations resulting from aircraft equations of motion.
The primary purpose of numerical model improvement is to identify and correct (update) the discrep-
ancies between experimental and predicted numerical outputs. In the case of significant disparities
between model predictions and experimental data from flight tests, the numerical aircraft model must
be updated until there is a satisfactory correlation between model predictions and experimental results.

The proposed updating algorithm and its advanced application is based on the study described in [38].
The formulation of the proposed updating approach enables correction of the system matrices A, B,
C, and D of the initial linearized discrete-time (DT) state-space system derived from a flexible aircraft
model. The updating method addresses linear estimation problems combining the phenomenological
and behavioral model assumptions.

Thus, two formulations for the error minimization, i.e. minimization of the output residual between flight
measured data and model predictions have been defined. The first utilises the state-space system’s
output equations, whereas the second requires both the state and output equations. The methodology
for updating that will be described here is based on a linear least-squares approximation resp. a min-
imum norm solution. The updating algorithm has three steps. In the first step, the calculated states
from the initial model corresponding to the rigid body aircraft dynamics will be corrected using output
equations. Here, the considered states are measured and comprise a subset of the outputs. In the sec-
ond step, we use the same approach as in the first. Here, the principal difference is that we consider
the states corresponding to rigid body and flexible aircraft dynamics. In the third step of the algorithm,
the system matrices A, B, C, and D are directly updated using the updated states from the previous
two steps. Note that the algorithm described in [38] consists of four steps. Here, we omit the fourth

FLIPASED D106 Data Analytics for Model Validation V01 y2022m11d17 25

step in which the system matrices C and D are reestimated to ensure a better output match without
regard to the actual system’s internal behaviour. Within the context of the method and model validation
analysis used for this study, we evaluate the quality of the updated model by residual analysis using
Theil’s inequality for assessment of the fit. Theil’s inequality and the breakdown of fit error in terms
of bias, variance and covariance proportions, offer insight on the validity of the predicted responses
from the updated model. The following diagram (Fig.25) illustrates a summary of the study presented
in this work, including the flight test domain, model structure, updating algorithm, and model validation
process.

Model Validation

Method Validation

+

Initial Aircraft Model

Nonlinear EoM

of flexible aircraft

(𝑥0, 𝑢0)

Continuous

-Discrete

Model

Conversion

Linearized EoM

(continuous-time)

Δ ሶ𝑥 = 𝑨Δ𝑥 + 𝑩Δu

Δ𝑦 = 𝑪Δ𝑥 + 𝑫Δu

Δ𝑥𝑘+1 = 𝑨𝑑Δ𝑥𝑘 +𝑩𝑑Δ𝑢𝑘

Δ𝑦𝑘 = 𝑪𝑑Δ𝑥𝑘 +𝑫𝒅Δ𝑢𝑘

Linearized EoM

(discrete-time)

ሶ𝑥 = 𝑓(𝑥, 𝑢)

𝑦 = 𝑔(𝑥, 𝑢)

Trimming

Linearization , ...

+

Flight Test

(Identification tests for model updating)

Process noise

(Air turbulence)

Aircraft

Measurement

noise
Measured

responsesInputs
Flight Data

Collection &

Compatibility

Updating Algorithm

Correction of model states

related to rigid body aircraft

dynamics using output equations

Correction of model states

related to rigid body and flexible

aircraft dynamics using output

equations

Updating of system matrices 𝑨𝑑,

𝑩𝑑 , 𝑪𝑑 and 𝑫𝑑 using both state

and output equations by

reintroducing of the corrected

states

Updated Aircraft Model (DT)

𝑨𝑑
(𝒄)

, 𝑩𝑑
(𝒄), 𝑪𝑑

(𝒄)
and 𝑫𝑑

(𝒄)

Step 1

Step 2

Step 3

𝑨𝑑, 𝑩𝑑 ,
𝑪𝑑, 𝑫𝑑

Simulated

responses

Simulated

responses

Flight Test (Validation test)

Process noise

(Air turbulence)

Aircraft

Measurement

noise
Measured

responses

Inputs

+
+

Residual Analysis

(Theil‘s inequality)

+

Measurement

noise

Measurement

noise

+
+

+
+

Inputs

Inputs

Model Predictive

Capability Check

(Proof-of-Match)

Figure 25: Overview of the model structure, updating algorithm and validation process [38]

5.1 Updating algorithm

This section outlines the formulation of the proposed updating approach for the numerical system matri-
ces Ad , Bd , Cd , and Dd of the discrete-time linear state-space system representing the flexible aircraft
model. The main objective of numerical model improvement is to detect and correct the discrepancies
between experimental and estimated system outputs. The updating methodology is based on error
minimization of the output residuals using both state and output equations. Its algorithm is a three-step
procedure and it is based on a linear least-squares approximation resp. a minimum norm solution.
We begin by defining the error minimization formulations used in the updating approach, and then we
outline the related updating steps.

FLIPASED D106 Data Analytics for Model Validation V01 y2022m11d17 26

The first error minimization problem which represents an output residual formulation between flight test
data and model predictions by using only the output equations, is defined as:

min
∆xk,i

Ntest∑
i=1

Nt−1∑
k=1

∥yk,i − Ssens · (Cd∆xk,i +Dd(uk,i − u0,i) + y0,i)∥2 . (1)

We shall denote the value of perturbed state vector ∆xk,i that minimizes Eq. (1) by ∆x
(c)
k,i , for fixed Cd

and Dd :

∆x
(c)
k,i = arg min

∆xk,i

Ntest∑
i=1

Nt−1∑
k=1

∥yk,i − Ssens · (Cd∆xk,i +Dd(uk,i − u0,i) + y0,i)∥2 , (2)

where uk,i ∈ Rm and yk,i ∈ Rl are measured inputs and outputs from i th flight test. Ntest denotes
the number of flight test sets used for model updating. For clarification: l is the number of outputs
from test and l is the number of outputs from numerical model. Ssens ∈ Rl x l is the sensor matrix
allocating the measured outputs with the estimated outputs from model. It is defined as an identity
matrix Ssens = I ∈ Rl x l if all outputs from the numerical model are measured. Otherwise it becomes
a rectangular matrix l < l . For most cases, a sensor matrix is needed when you are interested in
outputs that are essential but cannot be measured during the test, or when only a subset of measured
quantities is intended for model updating. The error minimization formulation given in 1 is used for the
first and second step of the updating algorithm, where for fixed Cd and Dd the perturbed states ∆xk can
be corrected.

The second error minimization formulation requires both state and output equations where system
matrices Ad , Bd, Cd and Dd can be corrected by using the updated states ∆x

(c)
k,i obtained from the Eq.

(2):

A
(c)
d ,B

(c)
d ,C

(c)
d ,D

(c)
d = arg min(

Ad Bd

Cd Dd

) Ntest∑
i=1

Nt−2∑
k=0

∣∣∣∣∣
∣∣∣∣∣
(
∆x

(c)
k+1,i

yk,i

)
−

[
I 0

0 Ssens

]([
Ad Bd

Cd Dd

](
∆x

(c)
k,i

uk,i − u0,i

)
+

(
0

y0,i

))∣∣∣∣∣
∣∣∣∣∣
2

.

(3)

Here, the error minimization formulation in Eq. (3) is used in the third step of the updating algorithm.
The three-step procedure of the proposed updating method may be summarised as follows:

1. Correction of measured states corresponding to rigid body aircraft dynamics using the first error
minimization formulation given in Eq. (2)

2. Correction of measured and unmeasured states relating to rigid body and flexible aircraft dynam-
ics using the first formulation for error minimization given in Eq. (2)

3. Correction of system matrices Ad , Bd , Cd and Dd using the updated states from the first and
second step using the second formulation for error minimization given in Eq. (3)

Detailed mathematical derivation of the updating methodology can be found in [46].

FLIPASED D106 Data Analytics for Model Validation V01 y2022m11d17 27

5.2 Model Validation

Facts are distinct from estimates. Model validation is essential for gaining confidence in or rejecting a
certain model. Comparing measured and simulated outputs is required to validate the updated model.
There are numerous aspects of model validation that can be broadly categorised into three subcate-
gories [12]:

• Statistical properties of the estimates

• Residual analysis

• Model predictive quality

These three methods offer insight into the effectiveness or ineffectiveness of model parameters. They
provide the essential means to evaluate the suitability of identified (updated) models and their parame-
ters in duplicating the system closely enough.

Within the framework of the method and model validation analysis employed in this study, we evaluate
the quality of the updated model by residual analysis using Theil’s inequality for assessment of the fit.
The prediction capability of the updated model, which will be described later in this section, is then
evaluated.

5.3 Theil’s inequality analysis and decomposition of fit error

Theil’s inequality provides an usefull type of output statistics for the overall fit. Theil’s inequality coeffi-
cient TIC is defined as

TICo =

√
1
Nt

∑Nt−1
k=0

(
yk,o − yk,o

)2√
1
Nt

∑Nt−1
k=0

(
yk,o

)2
+
√

1
Nt

∑Nt−1
k=0 (yk,o)

2
, o = 1, 2, ..., l (4)

where yk,o is the o’th output from model at time t = kTs and yk,o is its counterpart from flight test.
Theil’s inequality coefficient measures the conformity between two time series. In statistical terms, it is
the ratio of the root-mean-square fit error to the sum of the root-mean-square values of the measured
and estimated signals. TIC = 0 (case of equality) implies a perfect match, whereas TIC = 1 indicates
the case of maximal inequality.
Additionally, Theil analysed the fit error between the two time series in terms of bias, variance, and
covariance proportions given by [21], [41]:

TICM,o =

(
yM
k,o − yM

k,o

)2
1
Nt

∑Nt−1
k=0

(
yk,o − yk,o

)2 (5)

TICS,o =
(σy ,o − σy ,o)

2

1
Nt

∑Nt−1
k=0

(
yk,o − yk,o

)2 (6)

FLIPASED D106 Data Analytics for Model Validation V01 y2022m11d17 28

TICC,o =
2 (1− ρo)σy ,oσy ,o

1
Nt

∑Nt−1
k=0

(
yk,o − yk,o

)2 (7)

wehre yM
k,o and yM

k,o refer to the mean values of the oth measured and simulated output. σ and ρ are the
standard deviations and correlation coefficient respectively of the two output signals y and y . They are
defined as

σy ,o =

√√√√ 1

Nt

Nt−1∑
k=0

(
yk,o − yM

k,o

)2
, σy ,o =

√√√√ 1

Nt

Nt−1∑
k=0

(
yk,o − yM

k,o

)2 (8)

ρo =
1

σy ,oσy ,o

1

Nt

Nt−1∑
k=0

(
yk,o − yM

k,o

) (
yk,o − yM

k,o

)
. (9)

Again, we separate the three proportions defined in Eqs. 5-7 for each output.

The bias proportion TICM,o is a measure of the systematic error in the updated model, while variance
proportion TICS,o indicates the model’s capacity to duplicate the variability of the true system. Nonsys-
tematic error is quantified using the covariance proportion TICC,o. The above breakdown offers insight
into the sources of fit error. For an ideal case, the bias and variance proportions should be close to zero,
and the covariance proportion should be close 1. The sum of these three proportions equals 1. For both
TICM,o and TICS,o, a large value, often greater than 0.1, would be cause for concern and the updated
(identified) model should be scrutinised and analysed in detail. In conjunction with a visual evaluation
of the fit between the output signals, these criteria give slightly more insight into the characteristics of
residuals [46].

5.3.1 Model predictive capability
The predictive capability check of the updated model is determined by comparing the flight measured
responses with those estimated by the updated model for the ”same” control inputs. This requires a
flight test data set with the nearly identical control inputs and trim conditions as chosen in identification
tests for model updating. In the terminology of aircraft applications, this procedure is frequently referred
to proof-of-match (POM), which is not an easy task. Both the control input and output measurements
are susceptible to measurement noise. In addition, even when the proof-of-match manoeuvres can be
performed in apparently calm atmospheric conditions, the aircraft is excited by a small amount of non-
measurable turbulence-induced excitation. In general, complementary flight data, i.e. flight manoeuvres
not used in the identification tests for model updating, are used to evaluate the model predictive capa-
bility. Validation on complementary data is sometimes referred to informally as a ”acid test” [13].

FLIPASED D106 Data Analytics for Model Validation V01 y2022m11d17 29

5.4 Case Study

The algoritm of the proposed updating method is coded in MATLAB. With both the discrete state-space
model and access to flight test data of the FLiPASED demonstrator aircraft, the application of the
proposed updating methodology is demonstrated, followed by the presentation of convincing findings.

5.5 Flight Test

The FLiPASED aircraft is a jet-powered UAV with a wing span of 7.1 m and a takeoff mass of 65 kg. It
was manually operated within visual line of sight. Ref.[43] offers more insight into the flight test cam-
paign. The FLiPASED aircraft is equipped with an integrated measurement system that is considered in
both the nonlinear aircraft model and the linearized state-space representation, respectively. The usual
air data, position and inertial parameters are being logged on the aircraft. Attached to the front and rear
spars are 12 inertial measurement units (IMU) that records the structural deflections of the wings. The
wing-mounted IMUs measure translational accelerations in z direction and the angular rates ωx and ωy .
As outputs, 36 time histories are therefore provided. Figure 26 shows the configuration of the IMUs’
placement on the wings [37]. Further, a fuselage-mounted IMU provides flight measured translational
accelerations aFuse and the rotational rates ΩFuse. More information on flight test instrumentation (FTI) is
given in Ref. [43].

Figure 26: Location of accelerometers (IMUs) on FLiPASED aircraft [38]

The flight test data used in this study are provided by a pushover-pull-up manoeuvers. The primary
objective of pushover–pull-ups, commonly known as roller-coaster, is to identify lift and drag character-

FLIPASED D106 Data Analytics for Model Validation V01 y2022m11d17 30

istics, longitudinal stability, and elevator trim requirements. The maneuver starts from a trimmed level
flight condition with a constant thrust [12]. With a sampling rate of 200 Hz and a 20-second time win-
dow, experimental data from three test sets have been used for model updarting method. The recorded
input/output time series are then upsampled to 1 kHz to obtain data consistency with the discrete state-
space model of the aircraft. The flight measured outputs with their physical quantities are listed in the
table 4. In addition, the trim conditions obtained from flight test measurements are stated in table below
(Tab.5).

Table 4: Physical quantities of the states and inputs-outputs of the linear discrete-time state-space system of the
aircraft model*

States Inputs Outputs
kinematic dynamic elastic aerodyn. lag
∆ϕ ∆u ∆ηf (30) ∆xL (288) ∆ξ aileron defl. (8) ϕ
∆θ ∆v ∆η̇f (30) ∆η elevator defl.(4) θ
∆ψ ∆w ∆δF Thrust setting ψ
∆x0E ∆p ax, IMU-Fuse
∆y0E ∆q ay, IMU-Fuse
∆z0E ∆r az, IMU-Fuse

p IMU-Fuse
q IMU-Fuse
r IMU-Fuse

zE
VIAS

α
β

hbaro
pstat
ptotal

IMUs-Wing:
az, ωx, ωy (36)

* The numbers in parentheses denote the number of corresponding physical quantity.

Table 5: Trim values measured from identification flight tests

ηelev,0 [deg] θ0 [deg] Vias,0 hbaro,0 [m] α0 [deg] β0 [deg]
Identification Test #1 -3.68 0.99 38.5 814 2.78 0.403
Identification Test #2 -3.52 8.12 35.7 807 3.73 -0.818
Identification Test #3 -3.52 1.79 39.7 738 1.67 1.424

As is clear from the table above (5), the initial conditions assessed by three sets of flight data are not
”equal” as expected under real conditions. Here, we limit ourselves to the barometric altitude hbaro,0 and
Vias,0 parameters from which, inter alia, the generated state-space models are dependent.

For pushover-pull-up manoeuvres the aircraft is excited by elevator deflections, as depicted in Fig.27.

FLIPASED D106 Data Analytics for Model Validation V01 y2022m11d17 31

0 5 10 15 20
-10

-5

0

5

0 5 10 15 20
-15

-10

-5

0

5

10

0 5 10 15 20
-15

-10

-5

0

5

10

Figure 27: Elevator deflections used for pushover–pull-ups

FLIPASED D106 Data Analytics for Model Validation V01 y2022m11d17 32

5.6 Results

The presented updating method has been successfully applied on the linearized FLiPASED aircraft
model including the use of the flight test data. The results are based on the research described in [46].

Using residual analysis by means of Theil’s inequality formulation given in 4, we assess the quality of
the updated model for each of the output variables o = 1, 2, ..., l . Although the acceptable value for TICo

varies on the application, as a general guideline, a value < 0.25 indicates a satisfactory agreement. It is
also feasible to establish a single measure for the overall fit. Thus, we define the mean Theil’s inequality
coefficient TICmean given by

TICmean =
1

l
·

l∑
o=1

TICo % (10)

Figure 28 illustrates the correlation results calculated from Theil’s inequality formulation between the
considered subset of output signals from three flight test sets and corresponding outputs from the initial
and updated model.

Figure 28: Fit error distribution between flight test and updated model data for each output
(Number of test sets = 3)

As is evident from the plot in Fig. 28, a high degree of fit between flight test data and results from
updated linearized aircraft model has been achieved. The mean Theil’s inequality coefficient TICmean

(Eq.10) between the outputs from updated model and the recorded data from flight test is approximately
0.14 and has decreased by 0.17. Again, TIC = 0 implies a perfect match (best fit), whereas TIC = 1
indicates the case of minimum correlation. In addition, we partitioned the fit error TICo for each output

FLIPASED D106 Data Analytics for Model Validation V01 y2022m11d17 33

between the flight measured and reconstructed responses from the updated model into proportions of
bias, variance, and covariance given in the equations 5-7 as shown in Fig. 29.

As already mentioned in Section 5.2, the bias and variance proportions TICM and TICS should be
very small, typically (TICM + TICS) ≤ 0.2. Again, TICM is an indicator of the systematic error in the
updated model, while variance proportion TICS implies the model’s capability to duplicate the variability
of the physical system [12]. The diagram in Fig. 29 clearly demonstrates that nonsystematic error,
represented by the covariance proportion TICC, predominates the source of the fit error with TICC,o >
0.90 , ∀o = 1, 2, ..., l , which suggests a high quality of the updated model, that is, capacity to duplicate
the true system response.

Figure 29: Breakdown of the fit error into proportions of bias, variance, and covariance
(Number of test sets = 3)

Table (6) provides a detailed summary of the results obtained from Theil’s inequality formulation includ-
ing the decomposition of fit error between flight measured and reconstructed outputs from the updated
model.

FLIPASED D106 Data Analytics for Model Validation V01 y2022m11d17 34

Table 6: Correlation results including the decompositon of fit error between flight measured outputs from identifi-
cation tests and reconstructed outputs from updated model

TIC [-] TICM [-] TICS [-] TICC [-]
θ 0.20267 4e-05 0.003 0.99695
az IMU−Fuse 0.11085 0.02322 0.03488 0.9419
z E 0.02841 0.04142 0.00059 0.95799
q 0.12621 0.00506 0.00346 0.99149
Vias 0.03331 0.0249 0.00016 0.97494
α 0.07202 0.00177 0.02124 0.97699
hbaro 0.00721 0.02412 0.03584 0.94003
Ptotal 0.00128 0.02959 0.01411 0.9563
IMU L1 z 0.17478 0.00614 0.04021 0.95365
IMU L2 z 0.12126 0.00526 0.05868 0.93606
IMU L3 z 0.12501 0.00539 0.05964 0.93497
IMU L4 z 0.1228 0.00553 0.05709 0.93738
IMU L5 z 0.1491 0.00417 0.06588 0.92995
IMU L6 z 0.20174 0.00398 0.08365 0.91237
IMU R1 z 0.19578 0.00325 0.06382 0.93293
IMU R2 z 0.20428 0.00452 0.05543 0.94005
IMU R3 z 0.19206 0.00347 0.07302 0.92351
IMU R4 z 0.20545 0.0027 0.09392 0.90338
IMU R5 z 0.20948 0.0028 0.07607 0.92113
IMU R6 z 0.22037 0.00282 0.08966 0.90752

In the following, a few selected outputs from the flight test are plotted together with the outputs from
initial and updated linearized model of the aircraft (Fig. 30 - 36). It is clearly evident that the presented
updating method enables to reconstruct all the measured responses obtained from the flight test with
high accuracy even in case of highly noise-contaminated experimental data.

FLIPASED D106 Data Analytics for Model Validation V01 y2022m11d17 35

0 2 4 6 8 10 12 14 16 18 20
-80

-60

-40

-20

0

20

40

60

Figure 30: Pitch angle θ

0 2 4 6 8 10 12 14 16 18 20
-50

-40

-30

-20

-10

0

10

20

30

40

Figure 31: Pitch rate (q IMU-Fuse)

0 2 4 6 8 10 12 14 16 18 20
-6

-4

-2

0

2

4

6

8

Figure 32: Angle of attack α

0 2 4 6 8 10 12 14 16 18 20
-40

-30

-20

-10

0

10

20

Figure 33: Vertical acc. az, IMU-Fuse

FLIPASED D106 Data Analytics for Model Validation V01 y2022m11d17 36

0 2 4 6 8 10 12 14 16 18 20
650

700

750

800

850

900

950

Figure 34: Barometric altitude hbaro

0 2 4 6 8 10 12 14 16 18 20
850

900

950

1000

Figure 35: Total pressure Ptotal

Figure 36: A subset of vertical accelerations az,IMU recorded by six IMUs on the wings

FLIPASED D106 Data Analytics for Model Validation V01 y2022m11d17 37

5.7 Proof-of-match

For model validation within the framework of proof-of-match procedure, a flight test data set with nearly
identical control inputs and trim conditions is needed as chosen in identification tests for model updating.
Hence, a suitable set of test data is chosen for model validation, where the aircraft is excited for a
pushover-pull-up manoeuvre by an elevator deflection shown in Fig. (37) below.

0 2 4 6 8 10 12 14 16 18 20
-10

-8

-6

-4

-2

0

2

4

6

Figure 37: Measured elevator deflections and trim values from flight test for model validation

Trim values
ηelev,0 [deg] -3.68

θ0 [deg] 2.89

Vias,0 37.8

hbaro,0 [m] 809

α0 [deg] 2.64

β0 [deg] 0.873

FLIPASED D106 Data Analytics for Model Validation V01 y2022m11d17 38

Figure (38) demonstrates that a high degree of match has been achieved between outputs from vali-
dation flight test and outputs estimated from the updated aircraft model. The mean Theil’s inequality
coefficient TICmean is approximately 0.18 and has decreased by 0.15.

Figure 38: Fit error distribution between outputs from validation test and outputs provided from updated model for
proof-of-match procedure

5.8 Conclusion

In this study, it was proved that the proposed updating method can be successfully applied to discrete-
time LTI state-space models describing rigid body and flexible aircraft dynamics by employing multiple
flight test data. The suggested method permits adjustment of the predicted system matrices Ad, Bd,
Cd and Dd, beginning with the initial model, by minimizing the output residuals using both state and
output equations. The methodology enables the reconstruction of all flight-measured responses with
a high degree of overall correlation. The updated model has both phenomenological and behavioural
characteristics, with the structure, sparsity, and density degree of the updated matrices remaining quasi-
constant. The algorithm of the updating method described here is a three-step procedure and is based
on linear least-squares approximation resp. a minimum norm solution which enables an appropriate
implementation with fast execution avoiding optimization problems for approximation of solutions of
nonlinear differential equations derived from aircraft equations of motion. Another benefit of the pre-
sented approach is that updating algorithm can be performed with different data bases derived from
flight tests with the nearly identical initial conditions, which would lead to a more physically realistic
correction of the system matrices. For the method and model validation, Theil’s inequality formulation
was utilised. This enables insight into the sources of fit error and hence assesses the quality of the
updated model with physical insight.

FLIPASED D106 Data Analytics for Model Validation V01 y2022m11d17 39

6 Control System Design and Performance Validation

The lead responsible partner for control system design is ONERA, but both DLR-SR and SZTAKI pro-
vided significant contribution to this task.

The present chapter discusses the following topics:

• Short summary of the flight control design tools for baseline, load and flutter control design

• Description of hardware-in-the-loop test results with control laws

• Description of flight test results with baseline control laws

• Description of used tools and how the model based design tools are validated to standardize them
in the MDO toolchain

6.1 Baseline control structure

The function of the baseline controller is to control the rigid body motion of the T-Flex aircraft. For
this purpose a structured controller configuration was selected, which allows the sequential testing and
tuning of the different control laws. The structure can be depicted in Figure 39.

Figure 39: Structure of the baseline controller

The baseline controller has three operational mode:

(i) Direct Mode: The direct mode allows the pilot on the ground to bypass the flight control system.
The only part active in the flight control computer is the mapping from the received remote-control

FLIPASED D106 Data Analytics for Model Validation V01 y2022m11d17 40

signals to the commanded surface deflections. The pilot controls the pitch, roll and yaw axis
directly via the aircraft’s control surface deflections and its velocity via the thrust setting.

(ii) Stability Augmentation Mode: The augmented mode switches on basic augmentation for the
pilot. Instead of directly controlling the surfaces the pilot inputs pitch- and roll-attitude commands.
The side-slip angle is automatically regulated to zero, reducing the pilots need to control the yaw
axis separately. Velocity control remains in direct control, i.e., the pilot controls the velocity via the
thrust setting.

(iii) Autopilot Mode: In this mode the pilot fully delegates the aircraft control to the flight control
system. Altitude, course angle, velocity and side-slip angle are automatically controlled. To fly
along the defined test pattern, reference commands based on the aircraft position are generated
in a navigation module.

The inner loops of the control system in roll, pitch and yaw provide the basis for the operational model
(ii) and (iii). Mode (iii) is the core element of the autopilot adding the outer loops for course angle,
altitude and speed control (autothrottle) as illustrated in Figure 39. Thus, a series of cascaded control
loops is used to facilitate the control design task. As the cross-coupling between longitudinal and lateral
axis is negligible, longitudinal and lateral control design is separated. Thrust commands δth which are
transferred to an engine revolution command δω via a nonlinear mapping and the elevator δe are the
available actuators for longitudinal control.

6.2 Baseline control design

Lateral-directional control generates aileron (δa) and rudder commands (δr), which is a multivariable
problem and requires the coordinated use of aileron command δa and rudder command δr . The most
inner loop features roll-attitude (Φ) tracking, roll-damping augmentation via the roll rate (p), and coor-
dinated turn capabilities, i.e. turns without side-slip, via feedback of the side-slip angle (β). The outer
loop establishes control of the course angle (χ). All controllers are scheduled with velocity to increase
performance over the velocity range. Within the fully automated flight mode (iii) the reference signals
for the velocity (Vref), altitude (Href), and course angle (χref) are provided by a dedicated navigation al-
gorithm. It uses the GPS longitudinal and lateral position of the aircraft (xa and ya) as well as the current
course angle (χ) to provide the commands.

Structure wise, the control loops use scheduled elements of proportional-integral-derivative (PID) con-
troller structures with additional roll-offs in the inner loops to ensure that no aeroelastic mode is excited
by the baseline controller. A scheduling in dependence of the indicated airspeed Vias is used to ensure
an adequate performance over the velocity range from 32 m/s to 70 m/s. For the scheduling a first or
second order polynomial in Vias is applied. As an example the proportional gain kp = z0+ z1Vias + z2V

2
ias

is depending quadratically on Vias with the free parameters z0, z1, and z2. A comprehensive summary
of the used controller structures for each cascaded loop is provided in Table 7, including the channel
description in the controller architecture and the implemented scheduling.

Note that the controller outputs δe , δa, and δr defer from the actual surface inputs to ease the actual
control design task. Thus, they need to be transformed to physical actuator commands via an adequate
control allocation. The T-Flex aircraft has multiple control surfaces and features combined rudder and
elevator surfaces (ruddervators). The commands to the actuators of the two aileron pairs are deter-
mined by

δa,l2 = δa,l3 = 0.5δa
δa,r2 = δa,r3 = −0.5δa

(11)

FLIPASED D106 Data Analytics for Model Validation V01 y2022m11d17 41

Table 7: Summary of the control loops of the FLEXOP baseline flight control system with the inner loop functions
(first part) and autopilot functions (second part).

Control Loop Channel Structure Scheduling

Pitch Attitude Control (Θref −Θ) → δe PI 2nd-order polyn. in Vias
Pitch Damping q → δe P 1st-order polyn in Vias
Roll Attitude Control (Φref − Φ) → δa P 1st-order polyn in Vias
Roll Damping p → δa P 1st-order polyn. in Vias
Yaw Control β → δr PID 2nd-order polyn. in Vias
Autothrottle (Vref − Vias) → δth 2 DOF-PID none
Altitude (Href − H) → Θref PI 2nd-order polyn. in Vias
Course Angle (χref − χ) → Φref PID 2nd-order polyn. in Vias

to generate the required differential aileron deflections for roll motion control. For the ruddervators
superposition of the elevator command δe and the rudder command δr is applied by

δelev ,l1 = δelev ,l2 = δe + 0.5δr
δelev ,r1 = δelev ,r2 = δe − 0.5δr .

(12)

Thus, symmetric deflections on the left and right of the ruddervators correspond to elevator commands
while differential deflections establish rudder commands.

6.2.1 Parameter Tuning
With the baseline controller structure available, the next step is to tune the free parameters of the in-
dividual control loops. During this process, an individual optimization problem is set up for the tuning
of each control loop. This results in six optimization problems to be solved, as summarized in Table 8.
Note that the proportional damping augmentations in roll and pitch are not tuned separately but included
in the optimization problems of the corresponding tracking loops. For the inner loops a phase margin of
at least 45° is demanded. As short period damping is relevant, a minimum of 0.6 is set as optimization
constraint. For the roll motion a fast response time of 1 s with good tracking capabilities (steady state
error of 0.1) is defined. For the coordinated turn capabilities via the side slip angle feedback a single
constraint on the disturbance rejection gain is applied. For the outer loops an adequate frequency
separation commonly used in a cascade controller design is applied. The outer loops for controlling
attitude and course angle are designed to be five times slower than the inner loops, leading to a corre-
sponding bandwidth or response time constraint. Finally, the auto-throttle is a little more involved due
to the complex engine dynamics. Therefore, a model matching problem using the non-linear simulator
is used which aims to minimize the recorded error between the desired and achieved response in the
simulation.

6.3 Baseline control flight test results

The baseline controller has been tested in an intensive flight test campaign, where the separate loops
have been sequentially engaged in the different flights. It is important to emphasize, that the controllers
have been designed and tuned based on the available mathematical models of the aircraft, which is
only an approximation of the real dynamics. Therefore, several adjustments (fine-tuning) of the control
gains might be necessary in order to improve the performance of the baseline controller. This can be
performed smoothly due to the hierarchical structure of the controller. Accordingly, different tuning were
tested and compared to each other for the best achievable design.

FLIPASED D106 Data Analytics for Model Validation V01 y2022m11d17 42

Table 8: Overview of the six defined optimization problems with the number of free parameters and optimization
criteria within the model based design procedure of the baseline controller.

Channel Structure Free CriteriaParameters

Pitch Attitude Control PI 8 Damping ration of 0.6
incl. Pitch Damping P Phase margin of 45°

Roll Attitude Control P 4 Response time of 1s, steady state
incl. Roll Damping P Error of 0.1, phase margin of 45°

Yaw Control PID 9 Disturbance rejection gain
Auto-Throttle 2 DOF-PID 5 Model matching error
Altitude PI 6 Bandwidth criterion
Course Angle PID 9 Response time of 5 s

6.3.1 Augmented Mode Flight Tests
The first step of the testing is the so called stability augmented flights, where three inner-loops are
engaged (i.e. lateral, longitudinal and yaw) and the pilot directly controls the pitch and roll behaviour of
the aircraft, instead of the control surfaces.

In Flight Test 11 (FT11) three different lateral inner loop controllers were tested:

• The gains of AP1.1. were tuned down, for a slower response, in order to safely check the func-
tionalities.

• AP1.2. gains are higher than AP1.1. and provides a more aggressive (hence less robust) tracking
performance.

• AP1.3. uses a different Look-Up-Table mapping of the baseline control signals onto the surface
deflections.

The three controller is compared in Figure 40, where the roll angle tracking and the corresponding
aileron deflections are shown for each configuration. Based on the flights the pilot and the flight test
crew have agreed that the behaviour of AP1.3 was acceptable, therefore this version was used in the
later flights.

The post-flight numerical analysis supported the findings of the flight test crew, as AP1.2. and AP1.3.
provided almost the same bank angle performance with Root Mean Square (RMS) error of 4.15 and 5.6
degrees, respectively, while AP1.1.’s error was approximately 7.3 degrees.

Due to the negligible cross-coupling between the lateral and longitudinal axes, the inner and outer-loop
control law for the longitudinal motion could be tested independently. That being said, AP2 of FT11
consisted the pitch attitude inner loop and the engagement of the altitude hold outer loop. The altitude
hold feature was tested for the first time, where the aim of the control was to hold the GPS altitude
registered at the moment of the baseline autopilot’s engagement. The corresponding flight data is
given in Figure 41.

As it can be depicted the altitude hold function was working properly, holding the constant altitude
with an RMS value of 6.6 meters, due to the various gust disturbances. The performance of the pitch
attitude control was very promising as well, with mean-error value of −0.016 degrees. Note that the
blue reference signal of the θ tracking plot in Figure 41 is provided by the outer-loop controller in order
to maintain the desired altitude. The lower subfigure also shows the computed elevator deflections of
the aircraft, where no saturation was observed.

FLIPASED D106 Data Analytics for Model Validation V01 y2022m11d17 43

However, the flight test also pointed out that the outer loop’s bumpless transfer mechanism was not
properly implemented. When the pilot engaged AP2, the aircraft nosed down slightly, resulting in a
sharp transient as seen in Figure 41. This feature has been corrected.

The third function of the baseline controller, which was tested in Flight Test 11 was the sideslip loop.
This loop was engaged during the testing of AP1.1, AP1.2, AP1.3 and AP2 as well: Figure 42 shows the
recorded data. The goal of the controller is to maintain 0 sideslip angle, which is clearly achieved: the
mean error of β was approximately 0.07 degrees when the baseline controller was turned on, compared
to the 1.8 degree of uncontrolled value.

6.3.2 Altitude Tracking and Autothrottle Tests
The goal of Flight Test 12 was to check further functionalities of the baseline control structure. First,
the reference tracking properties of the altitude hold control loop was tested. During this test, the
reference altitude was changed by ±25 meters, instead of the constant value applied in FT11. Figure
43 shows the tracking performance, where an approximate 10 seconds of settling time was observed
with a permanent error of ≈ 3 meters. This latter result implies a further fine tuning of the integral part
of the longitudinal outer loop. Besides this phenomena, the altitude loop can be considered functional.

Testing of the autothrottle loop involved three different control laws:

• A 2-degrees-of-freedom PID controller with low gains was tested first in order to first check the
basic response of the control structure. This version is considered as a robust solution.

• A 2-degrees-of-freedom PID controller with higher gains is labelled as performance solution,
where the response is more aggressive.

• Lastly a Total Energy Control solution was also implemented, where the altitude hold and the
speed control are coupled together.

Figure 44 compares the control performance of the three controllers. The results are matching the
model based expectations clearly: the ’robust’ solution provided a slow tracking response for the com-
manded 4m

s step change in the airspeed, compared to the ’performance’ version of the same control
structure. Based on the post-flight numerical analysis, the TECS solution performed the best: the mean
speed error was −0.55m

s only, smaller than the robust (−1.5m
s) and the performance (−1m

s) errors.

However, the flight tests revealed a few shortcomings of the autothrottle loop:

• The saturation limits of the 2-DOF-PID solutions were implemented wrongly, hence these con-
trollers could not use the entire RPM range of the engine. The problem has been fixed and further
flight tests will be performed in order to evaluate these controllers.

• The engine was spooling down when the autothrottle loop was engaged (see the drops of ECU
RPM values in Figure 44. The cause of this phenomena is again the bumpless transfer mech-
anism. In the new version of the autothrottle controller, an integrator tracking solution is imple-
mented in order to avoid sudden drops in the RPM.

• The control action of the autothrottle (for each configurations) showed large variation in the RPM
values. Figure 45 illustrates the problem. It can be clearly seen that the requested and the
commanded RPM values are moving with a different phase, this indicates that the estimated
delay for the engine dynamics differs from the actual value. To overcome this problem an updated
engine model is needed and accordingly the re-design of the autothrottle loop.

Based on the experiences of the pilot and the flight test crew, the ’performance’ controller has been
selected for future future flight tests on the site.

FLIPASED D106 Data Analytics for Model Validation V01 y2022m11d17 44

6.3.3 Course Angle Flight Test
Flight Test 14 was dedicated to test the course angle hold and tracking capabilities of the baseline
controller. This has been performed in two consecutive steps.

First, the course angle loop was tested through a reference step change, and a coordinated turn maneu-
ver. Figure 46 shows the inner and outer loop performance of the lateral loops. As it can be seen, first
the heading reference angle χ was changed in a step-like fashion, which was tracked by the controller
properly. After this successful test, a coordinated turn maneuver was performed, where the course
angle was changed incrementally to fly a complete circle with the T-Flex aircraft. It can be depicted
in Figure 46 that the inner loop’s tracking performance is excellent, while the outer loop follows the
reference signal with a slight delay. Figure 47 shows the trajectory of the aircraft during the maneuver.

Upon the successful testing of the course angle loop, the navigation logic was tested. The goal was
to fly the complete horserace pattern in a fully automated manner, i.e. all baseline loops engaged.
Figure 48 shows the flight trajectory in North-East coordinate system, where one can clearly observe
that the entire functionality of the baseline works smoothly and is able to fly the desired pattern fully
autonomously.

6.3.4 Preparation for Flutter tests
As the baseline functionalities have been tested with acceptable control performances, further a flight
test was performed in order to facilitate future flight tests for flutter control. The objective of the test was
to gradually increase the speed of the aircraft and see the behaviour of the baseline controller. This test
is useful in the preparation of the flutter flight tests, where the speed will be increased in the straight legs
of the horserace pattern. In addition, these tests are also validating the range of the baseline controller.
As mentioned previously, the gains of the controller are scheduled with the indicated airspeed, hence
expanding the speed range expands also the domain of the baseline controller.

In order to keep the aircraft within the view sight of the pilot, full circles have been flown with increasing
speed. Figures 49-51. Figure 49 shows the lateral inner-outer loop performances during the flight,
where similar performance has been observed as in the previous flight tests. The corresponding tra-
jectory of the aircarft is shown in Figure 50 with the multiple full circles. Lastly, Figure 51 shows the
speed profile during the flight. It can be seen that the autothrottle was able to track the increasing speed
reference until 50m

s , but the control performance was diminished above this speed. This is due to the
previously noticed incorrect saturation limit on the RPM values. Nevertheless, it is also worth to mention
that the tracking performance below 50m

s was better than in earlier flight tests, this is due to the design
process of the autothrottle, which was tuned through non-linear optimization and with all other baseline
loops engaged.

FLIPASED D106 Data Analytics for Model Validation V01 y2022m11d17 45

((a)) Lateral inner loop for AP1.1. - Flight Test 11

((b)) Lateral inner loop for AP1.2. - Flight Test 11

((c)) Lateral inner loop for AP1.3. - Flight Test 11

Figure 40: Comparison of different lateral inner loop controllers during Flight Test 11

FLIPASED D106 Data Analytics for Model Validation V01 y2022m11d17 46

Figure 41: Flight test evaluation of the longitudinal control laws

Figure 42: Sideslip loop performance during Flight Test 11

FLIPASED D106 Data Analytics for Model Validation V01 y2022m11d17 47

Figure 43: Altitude reference tracking during FT12

Figure 44: Comparison of different autothrottle controllers during FT12

FLIPASED D106 Data Analytics for Model Validation V01 y2022m11d17 48

Figure 45: Speed tracking and the corresponding RPM signal

Figure 46: Course angle tracking performance during reference step change and coordinated turn

FLIPASED D106 Data Analytics for Model Validation V01 y2022m11d17 49

Figure 47: Coordinated turn

Figure 48: Horserace flight pattern

FLIPASED D106 Data Analytics for Model Validation V01 y2022m11d17 50

Figure 49: Course angle for full circle tests with increasing speed during FT16

Figure 50: Full circle trajectories with increasing speed during FT16

FLIPASED D106 Data Analytics for Model Validation V01 y2022m11d17 51

Figure 51: Increasing speed during FT16

FLIPASED D106 Data Analytics for Model Validation V01 y2022m11d17 52

7 Validation of data driven wingshape estimation by ana-
lytic models

One of the main goals of the FLiPASED project is to develop drag reduction control laws for aircraft with
highly flexible wings. The main motivation of this chapter is to present two different approaches, one
relying on purely theoretical models, the other using experimental data utilizing machine learning tools,
to estimate the flexible dynamics of the T-Flex demonstrator which can be then used for the design of a
wing shape controller for drag reduction purposes.

The most straightforward solution for designing a state predictor is the Kalman filter ([18]) for linear
systems and the extended Kalman filter (EKF) in the case of nonlinear systems, which is widely used
for inertial estimation of wing shape ([20]). However, it has two main drawbacks. First, it requires
the exact mathematical state-space description of the nonlinear system, which might not be available
or simply its use is computationally too expensive. The second drawback is that the EKF requires
knowledge of noises and disturbances related to observations and states. To solve the first issue, the
approximation of the full, nonlinear system with a Linear Parameter Varying (LPV) model ([39]) can be
considered, as it can significantly ease the computational burden, while being suitable for use with an
EKF ([32]). However, noise information is still required.

Data-driven approaches have the great advantage that they can be used for inertial odometry ([10])
and inertial aided navigation ([45]) problems without needing any specific information about model or
observation uncertainties. To utilize this advantage the new KalmanNet architecture was created by
[31], which is based on Kalman filtering, but it uses a Recurrent Neural Network (RNN) to estimate the
Kalman gain. As a result, it does not need any information about the noises and model uncertainties
present. The standard KalmanNet architecture uses linear layers and a Gated Recurrent Unit (GRU) to
be able to establish correlations between data samples in time. The main novelty of this research are
the followings. First, we apply the KalmanNet architecture to a complex LPV model of a real-life system
with high dimensionality. This required a new loss calculation to ensure the stability of the whole state
predictor, the slight modification of the layer dimensions in order to decrease computational burden and
the implementation of a hyperparameter optimizing algorithm as well. Second, we propose a different
neural network architecture for the KalmanNet which uses 1D convoultional layers alongside the GRU
layer, since 1D convolution can be effectively used for processing timeseries data ([33]).

This chapter presents the LPV-based EKF and the KalmanNet for predicting the modal coordinates and
aerodynamic lag states of the nonlinear model of an Unmanned Aerial Vehicle (UAV) T-Flex, which was
created within the FLEXOP project for demonstrator purposes. ([42]) The training of the neural network
was done in Python with PyTorch, while testing was carried out with MATLAB, Simulink simulations.
The chapter is organized as follows. In Section 7.1, the dynamic model of the FLEXOP demonstrator
is presented. Section 7.2. introduces the reduced, LPV model of the original nonlinear system, and
explains the idea of the LPV-based EKF. In Section 7.3. the KalmanNet’s basic structure is summarized
with the two different neural network architecture: a linear one and a convolutional one both utilizing
a GRU cell. Section 7.4 presents the results of the modal coordinate and lag state estimations. The
accuracy of the LPV-based EKF and the KalmanNet is compared. Conclusions are drawn in Section 7.5.

7.1 T-FLEX demonstrator dynamic model

The chosen system for our research is the nonlinear, state space representation of the FLEXOP demon-
strator aircraft. The model consists of the following main parts: states that are responsible for the de-
scription of the rigid body dynamics; states related to flexible dynamics and aerodynamics, and finally,

FLIPASED D106 Data Analytics for Model Validation V01 y2022m11d17 53

Figure 52: Demonstrator control surfaces and IMU locations

states that represent the control surface inputs and their first derivatives. The state vector is denoted as
x ∈ ℜ48. The rigid body motion is represented with a 6-DOF model with 12 states: states of translational
and angular velocities, position, and orientation.

The states which describe the flexible dynamics are the modal coordinates and their first derivatives.
Due to the reduced order modelling only the six most significant modal coordinates and two aerody-
namic lag states were considered. This is denoted as xflex ⊂ x and xflex ∈ ℜ14. The main objective of this
research is the estimation of xflex = [Uf 1,Uf 2,Uf 3,Uf 4,Uf 5,Uf 6, U̇f 1, U̇f 2, U̇f 3, U̇f 4, U̇f 5, U̇f 6, lag1, lag2]

T .
Further details of the modeling and model order reduction are given in [42], [40] and [24].

The elements of the input vector, u ∈ ℜ19, of the T-Flex aircraft model are (Figure 52): two landing
gears (GearR/L), two landing gear wheelbrakes (WheelbrakeR/L), two airbrakes located on the aircraft’s
fuselage (AirbrakeR/L) and one turbofan engine (Throttle). The demonstrator has 12 control surfaces:
four-four ailerons (AileronR/L) on each wing and on the V-tail two-two ‘ruddervators’ (TailR/L). From
the inputs, the landing gear-related ones are insignificant in our research since the estimation of the
structural dynamics is only conducted during airborne operations.

The output vector, y ∈ ℜ64, of the demonstrator model is made up from the following elements. It
has 23 rigid body related outputs, which provide information about the aircraft’s position (xE , yE , zE),
orientation (ϕ, θ, ψ), translational (vN , vE , vD) and angular velocity (p, q, r), and acceleration (axB ,
ayB , azB). Furthermore, the course angle (χ), angle of attack (α), sideslip angle (β), air (pa) and total
pressure (pT), barometric altitude (hbaro), indicated (vIAS) and the true airspeeds (vTAS) are measured
as well. Each wing of the demonstrator has six-six inertial measurement units (IMUs). An IMU provides
acceleration and angular velocity data around the x-, y - and z-axis of its coordinate system. We opted
for such an IMU configuration, where the IMUs on the leading-edge measure accelerations in the x , y ,
and z directions, while the IMUs on the trailing-edge provide angular velocity data around the x- and
y -axis, and acceleration data in the z direction. The exact location of the IMUs can be seen in Figure 52
as well. In addition, the wingtip coordinates can be measured with a mono camera for preventing
acceleration-based estimation errors from diverging in time ([20]). On each wing, the coordinates of
four wingtip points are measured in each direction.

FLIPASED D106 Data Analytics for Model Validation V01 y2022m11d17 54

7.2 Model based estimation of flexible dynamics

7.2.1 LPV model
The linear parameter varying (LPV) model is an approximation to describe the behaviour of a nonlinear
system ([39]). It is essentially a pointwise linearization of a state-space system: the nonlinear system
is linearized at different trim points that are defined by - the so called – scheduling parameters. The
scheduling parameters create a multidimensional grid, and a linear, state-space model is assigned to
every grid point. The state-space description of a discrete time LPV system is described by

x [k] = A(ρ[k])x [k − 1] + B(ρ[k])u[k],

y [k] = C (ρ[k])x [k] + D(ρ[k])u[k],
(13)

where ρ[k] is the time varying vector of the scheduling parameters in time step k. A ∈ ℜ48×48, B ∈
ℜ48×19, C ∈ ℜ64×64 and D ∈ ℜ64×19 are the state space matrices of the LPV system that are dependent
of the current ρ[k] vector. x [k] denotes the state vector, u[k] the system’s input vector, while y [k] is the
system’s output vector in time step k .

In our work, we created an LPV approximation of the nonlinear bottom-up model of the T-Flex demon-
strator aircraft with two scheduling parameters, ρ ∈ ℜ2: the true airspeed (vTAS) and the roll angle (ϕ)
sensor outputs. The grid for the LPV model consisted of airspeed values from 30m/s to 50m/s with a
1m/s resolution while the roll angles from 0◦ to 40◦ with 10◦ resolution. Then the nonlinear model was
trimmed at each grid point. The resulting LPV model structure was then further refined to 0.1m/s and
1◦ resolution with the spline interpolation method of the LPVTools MATLAB toolbox ([2]).

7.2.2 LPV-based Kalman filtering
For the model-based wing-shape estimation, an extended Kalman filter (EKF) was used. The EKF
pipeline requires the full, nonlinear state-space description of the system as well as information about
the model noise and observation noise in the form of noise covariance matrices. The nonlinear system’s
state-space representation with time discretization in time step k:

x [k] = f(x [k − 1], u[k]) + w [k]

y [k] = h(x [k], u[k]) + v [k].
(14)

The nonlinear function f(.) is called state-transition function, while h(.) is called state-observation func-
tion. The w [k] ∈ ℜ48 and v [k] ∈ ℜ64 vectors are the model noise and observation noise vectors
respectively. However, the explicit mathematical description – the nonlinear state-transition and state-
observation functions – of the T-Flex demonstrator was not available to us, therefore a unique approach
was necessary for the design of the EKF.

The general framework of the EKF consists of two main steps: prediction and update. In these steps,
pointwise linearization is used to approximate the behaviour of the nonlinear system. More precisely
the Jacobians of the nonlinear state-transition and state-observation functions are calculated to get the
linear, state-space matrices A[k], B[k], C [k] and D[k] at each time step. In the prediction step the prior
state estimation is calculated using the inputs of the current time step and the estimations from the
previous time step with

x̂ [k |k − 1] = f(x̂ [k − 1|k − 1], u[k]). (15)

The prior state estimation covariance P ∈ ℜ48×48 is

P[k|k − 1] = A[k]P[k − 1|k − 1]A[k]T + Q. (16)

In the update step, first, the innovation

ỹ [k] = y [k]− h(x̂ [k|k − 1], u[k]) (17)

FLIPASED D106 Data Analytics for Model Validation V01 y2022m11d17 55

is calculated. then the near-optimal Kalman gain, KG ∈ ℜ64×48

KG [k] = P[k|k − 1]C [k]T (C [k]P[k|k − 1]C [k]T + R)−1. (18)

With the help of the Kalman gain, the posterior state vector

x̂ [k|k] = x̂ [k|k − 1] + KG [k]ỹ [k], (19)

and state prediction covariance

P[k|k] = (I − KG [k]C [k])P[k|k − 1] (20)

is computed. In the equations, the Q ∈ ℜ48×48 and R ∈ ℜ64×64 matrices are the model and the
observation noise covariance matrices respectively.

To obtain an appropriate pointwise linearization we used our LPV model. During simulation, the true
airspeed and roll angle is measured at each time step which then can be used to select an approximat-
ing linear system from the LPV model. The selected model’s state-space matrices are fed to the EKF
as the current A[k], B[k], C [k] and D[k] matrices. Then the EKF conducts the prediction and update
steps. For acquiring the model noise matrix both the nonlinear and the LPV models were simulated with
doublet inputs on the control surfaces and then the measured outputs and states were compared, and
variances of the differences calculated. For the observation covariance matrix, the T-Flex’s onboard
sensors’ noise variances were used. These were specified based on the sensors’ datasheets. Note
that we used the assumption that both noises have 0 mean, normal distributions, and the noise vectors
at each time step are mutually independent.

7.3 Data-driven estimation of flexible dynamics

7.3.1 KalmanNet architecture
The other approach for estimating the flexible dynamics of the demonstrator is to use artificial intelli-
gence, more precisely a neural network. Our choice was to use the relatively new KalmanNet architec-
ture ([31]). KalmanNet combines Kalman filtering with a neural network as it still uses the current inputs
and observations for giving state estimations, however, the near optimal Kalman gain is provided by a
trained recurrent neural network (RNN). The main advantage of this is that KalmanNet does not require
either the model (Q) or the observation noise covariance matrices (R) and it can effectively overcome
any uncertainties or errors in the model of the dynamic system while retaining engineering insight about
the physical system.

The KalmanNet pipeline is the following. It still consists of a prediction and an update step just like a
Kalman filter. In the prediction step however only the prior state prediction (15) is calculated, the state
prediction covariance (P) is not. In the update step, first the innovation difference (∆y [k] ∈ ℜ64) and the
forward update difference (∆x [k] ∈ ℜ48) are computed:

∆y [k] = y [k]− ŷ [k |k − 1] (21)

∆x̂ [k] = x̂ [k − 1|k − 1]− x̂ [k − 1|k − 2]. (22)

These act as the input features for the recurrent neural network. Furthermore, the roll angle (ϕ) schedul-
ing parameter was also used as an input feature in order to make the handling of turning manoeuvres
easier. The RNN then provides the Kalman gain in each time step. With the Kalman gain and using the
innovation, the a posteriori state prediction vector is calculated as in (17) and (19) respectively. As it
can be seen, neither the state estimation covariance matrix (P) nor the noise covariance matrices are
required: the whole pipeline works without any information about the model or observation noises.

FLIPASED D106 Data Analytics for Model Validation V01 y2022m11d17 56

The standard Kalman gain predicting neural network presented in [31] uses a Gated Recurrent Unit
(GRU) as the recurrent layer and linear layers with Rectified Linear Units (ReLU) as activation function.
The architecture is the following: it has a linear layer as the input layer with ReLU activation followed by
the GRU. After the GRU layer, there is another linear layer with ReLU activation, then the linear, output
layer. We slightly decreased the dimensions of each layer compared to the proposed architecture. The
reason behind this modification was mainly memory consumption related. Since our aircraft model
has a relatively high number of states (48) and outputs (64) using the original layer dimensions, we
frequently ran out of GPU memory, while training with CPU was extremely slow.

Apart from the original linear architecture, we implemented a different neural network loosely based
on the one presented in [45]. The network architecture still uses a GRU cell, however instead of
linear layers it uses 3 convolutional blocks at the beginning. A convolutional block consists of a 1D
convolutional layer followed by a ReLU activation function. After the ReLU a Batch Normalization layer
is used which is followed by a Dropout layer with 0.25 dropout probability. A fully connected layer is
only kept at the end of the network for providing the Kalman gain matrix. The kernel size for each 1D
convolution layer is seven. As the 1D convolutional layer requires a trajectory, or time-window of input
features, simply using the previously mentioned forward update difference (∆y [k]), innovation difference
(∆x̂ [k]) and roll angle (ϕ) input features of the current timestep is not adequate. Therefore, we used
the input features of the current timesteps and the input features form the previous 19 timesteps in the
time-window buffer.

The full KalmanNet pipeline with the convolutional neural network is presented in Figure 53. The num-
ber of features is shown below the convolutional blocks, the pool size below the max pooling layer. The
number of units is indicated underneath the GRU and the linear layer. The dropout rate is shown below
the dropout layer.

Figure 53: KalmanNet pipeline

7.3.2 Training data
Training, validation, and testing datasets were generated using the T-Flex’s high-fidelity nonlinear Simulink
model. In order to create a rich dataset, while having realistic flight conditions, an ‘8-shaped’ track was
generated using the baseline controller of the aircraft also implemented in Simulink.

To make each dataset different, randomized windgust and turbulence disturbances were used as well,

FLIPASED D106 Data Analytics for Model Validation V01 y2022m11d17 57

together with Gaussian sensor noise, based on the flight test results of the demonstrator [3]. The main
purpose of applying wind loads is having disturbances that cannot be incorporated into any covariance
matrix, and generating trajectories that are more realistic. Going through the generated track takes
the aircraft roughly 120s with the initial velocity of 42m/s, so the duration of the simulation was set
accordingly. The sampling time was set to 5ms, which results in a 24000-sample long trajectory for
each dataset. This was then split into 20, 1200-sample (6-second) long batches. For training, in each
epoch 8 batches were randomly selected from the total 20. However, validation, as well as testing, was
conducted on the whole 20-piece, 6-second-long trajectory in order to get meaningful information about
the architecture’s performance.

7.3.3 Training details
For the two neural network architectures the training parameters were set with the use of a custom
made hyperparameter optimization algorithm based on RayTune. The hyperparameter optimization
had 20 runs, each lasting for 25 epochs. Otherwise, the hyperparameter optimization used the same
pipeline as normal training runs.

The optimizer algorithm was ADAM for both architectures. In order to avoid overfitting, weight decay
was used. The prediction accuracy was calculated with mean squared error (MSE) function. However
– although the linearized aircraft model is a stable system, the system’s poles are relatively close to the
unstable region. So, a stability criterion was added to the MSE loss function. It is possible to describe
the complex system of the aircraft model joined with the Kalman filter with an error system:

e[k + 1] = (A− KGC)e[k], (23)

where KG is the Kalman gain, e[k] ∈ ℜ48 is the state prediction difference at time step k. If the error
system’s state transition matrix (A− KGC) has any unstable poles, then the whole system is unstable.
Hence, the MSE loss was extended with the distance of the error system poles from the boundary of
stability if it is larger than 0, thus making the loss value larger if the computed Kalman gain results in an
unstable error system. This is especially useful for the convergence of the training.

The error metrics were defined in decibels for the sake of convenience during plotting because the
freshly initialized network tends to produce large errors. It is simply calculated with the following for-
mula:

lossdBMSE = 10 log10(lossMSE). (24)

Of course, the metric was solely used for evaluation and plotting. For optimizing the network weights,
the standard MSE loss value was used during backpropagation.

For initializing each layer’s weights, standard normal distribution was used. However, as the whole ar-
chitecture incorporates a discrete time system, it was very sensitive to the initial weight values. There-
fore, standard deviation of the normal distribution for the initialization had to be chosen to be very small
(5 · 10−6) for avoiding the otherwise highly diverging training process.

It is important to mention that the 1st architecture’s performance proved to be more stable than the
2nd which had the tendency to get stuck in local optima. So, to overcome this issue the reduction of
the learning rate during training was necessary in the case of the 2nd network. The threshold was set
at −42dB – according to the decibel-based error metric – and the reduction factor was 0.05. The new
learning rate was calculated as lrnew = factor · lrold. The used hyperparameters for each neural network
architecture are presented in Table 9 .

FLIPASED D106 Data Analytics for Model Validation V01 y2022m11d17 58

Table 9: Hyperparameters

Hyperparameter Linear Convolutional
Learning rate 3.2 · 10−6 1.5 · 10−7

Weight decay 7.5 · 10−5 9.5 · 10−5

7.4 Results

7.4.1 LPV-based EKF
The LPV-based EKF’s performance was evaluated on the test dataset generated for the KalmanNet.
This means that during the simulation, the aircraft followed the same 8-shaped track with wind and
turbulence disturbances independent from the training data. The initial conditions were 42m/s flight
speed at 800m altitude, with 2◦ course angle. The whole simulation lasted for 120 seconds which
corresponds to 1 full lap around the track. The results of the EKF-based state predictions are shown
in Figure 54, where the data with the ‘nonlinear’ label show the states of the nonlinear model, while
the ‘EKF’ show the states estimated by the filter. Since the main purpose of the observer design is to
observe the flexible dynamics of the states, only the results for these states are presented. The first
4 modal coordinates are plotted where Uf 1 is the 1st symmetric bending and Uf 2 the 1st asymmetric
bending mode. Uf 3 denotes the 1st symmetric torsion mode and Uf 4 is the 1st asymmetric torsion
mode. The 2 aerodynamic lag states are plotted as well.

Figure 54: LPV-based EKF results

From the results, it can be concluded that the designed filter accurately predicts the modal coordinates
and the aerodynamic lag states even in the presence of wind disturbances which’s effects cannot be
incorporated into the observation noise matrix. The predictions’ root mean squared error (RMSE) for
the plotted states is 7.62 · 10−4. Minor errors occur only during turning manoeuvres in state lag1. The
reason behind these is that the LPV model is still just an approximation of the real, nonlinear system.
However, these inaccuracies are inside the error tolerance for this problem.

FLIPASED D106 Data Analytics for Model Validation V01 y2022m11d17 59

7.4.2 KalmanNet
For training, the generated 20 batches of 1200 sample long trajectories were used with a sampling
time of 5ms. The inputs for the KalmanNet architecture were the observations and control surface and
throttle inputs of the nonlinear model. The target for the network were the nonlinear model’s states.
During training, validation and testing the KalmanNet used the LPV model of the nonlinear model. For
evaluation the initial trim condition of 42m/s true airspeed was used at 800m altitude with initial course
angle of 2◦ just like in the case of the EKF.

Figure 55: Linear (left) and convolutional (right) architecture training graphs

Neural network with linear layers

First, we tried the slightly modified original KalmanNet architecture which uses linear layers with the
GRU. The training lasted for 200 epochs. Using an Nvidia Tesla V100 GPU with 32GBs of RAM, the
whole procedure took 23 hours. The summary of the training is presented in Figure 55 (left). The
previously discussed decibel-based metric was used for plotting.

The trained model was evaluated on the same dataset as the LPV-based EKF. The results for the first
4 modal coordinates and the 2 aerodynamic lag states can be seen in Figure 56. From the results, it

Figure 56: KalmanNet results with linear architecture

can be seen that the neural network managed to produce comparable results with the EKF in the case
of Uf 1, Uf 3, Uf 4 and lag2. In the prediction of Uf 2 and lag2 however a larger error is present between

FLIPASED D106 Data Analytics for Model Validation V01 y2022m11d17 60

time step 8000 – 12000. As, in this interval, the aircraft conducts a heavier acceleration, it is possible
that the training data is not comprehensive and balanced enough to make the neural network capable
of learning such manoeuvre. The RMSE value of the predictions is 1.67 · 10−3. Neural network with
convolutional layers

Second, we implemented the proposed network architectures with convolutional layers. In this case,
the training duration was 100 epochs. That took 15 hours to complete using the V100 GPU. The 1D
convolution expects a time series as an input, a 20-sample long time window was used which equals
to 0.1s trajectory. Unfortunately, we could not use a larger window size, because we ran out of GPU
memory (and training with CPU was not feasible, due to its extremely slow execution speed). The
training graph is shown in Figure 55 (right) with loss values in decibels.

Testing was done with the same dataset as in the previous approaches. The results for the first 4
modal coordinates and the 2 aerodynamic lag states are presented in Figure 57. The results indicate

Figure 57: KalmanNet results with convolutional architecture

the following: the network manages to give similar predictions in the case of Uf 1, Uf 3, Uf 4 as the LPV-
based filter, but performs worse on Uf 3, lag1 and even lag2. However, the prediction error of lag2 in the
8000 – 12000 interval is smaller than in the case of the linear architecture. The RMSE in this case was
1.69 · 10−3 for the first four modal coordinates and the two lag states, which is somewhat bigger than
the linear architecture’s, but not significantly.

7.5 Data Driven vs. Model Based Estimation Conclusion

To summarize, in this work we propose a model-based and a data-driven approach to estimate the
flexible dynamics of a UAV with large wingspan and highly flexible wings. The model-based approach
uses an LPV-based EKF while the data-driven solution utilizes the KalmanNet architecture with 2 differ-
ent neural network setups. We showed that the EKF-based estimator is able to predict the flexible and
aerodynamic lag states. The neural network-based approach is also capable of estimating the above-
mentioned states, however, in the case of the Uf 3, lag1 and lag2 larger errors are present. Comparing
the two neural network it can be concluded that both provide relatively similar accuarcy. However, al-

FLIPASED D106 Data Analytics for Model Validation V01 y2022m11d17 61

though the training of the linear network proved to be more stable, it requires almost double the training
time as the convolutional one. It is important to mention, that the revision of the training datasets,
and - generally - further research and datasets are needed to aquire better and more accurate results.
Our long-term goal is to test both architectures in real-life flight data and then incorporate them in the
T-Flex’s FCC for real-time, airborne operations. With this, it will be possible to design a wing shape
controller to minimize aerodynamic drag during flights.

FLIPASED D106 Data Analytics for Model Validation V01 y2022m11d17 62

8 Conclusion

The main output of the deliverable is the definition of the tools and their use within the project to anal-
yse data generated by simulations, ground or flight tests. The models and methods are validated by
comparing different methods and tools, or simulations with test data. The MDO toolchain requires
FEM models and computational fluid dynamics for aerodynamics modelling what are experimentally
validated for the current demonstrator configuration, and hence their validity for parametric studies are
established.

Using the building blocks and flight dynamics expertise the aeroservoelastic model of the aircraft is built
from analytic models what have been updated and validated using system identification methods.

The flight control laws of the demonstrator are also designed using model based tools and their HIL and
flight test campaigns proved the underlying aeroservoelastic models as well as the design tools. This
leads to the conclusion that parametric variation of the model within the MDO toolchain will result in
valid and well performing closed-loop systems, and the results will be applicable for conceptual aircraft
design.

The last step in our current investigation is to provide state estimation for wingshape control, where
artificial intelligence based methods are envisioned, what can be trained with large amounts of flight
test data. The performance of these machine learning based methods are validated by comparing their
performance to pure LPV Extended Kalman Filtering with precise knowledge of the plant.

FLIPASED D106 Data Analytics for Model Validation V01 y2022m11d17 63

9 Bibliography

[1] MATLAB - MathWorks - MATLAB & Simulink.

[2] Gary J Balas, Andrew Packard, Peter J Seiler, and Arnar Hjartarson. LPVTools - A toolbox for
modeling, analysis and synthesis of parameter yarying control systems. MUSYN Inc., 2015.

[3] Julius Bartasevicius, Sebastian J Koeberle, Daniel Teubl, Christian Roessler, and Mirko Hornung.
Flight testing of 65kg t-flex subscale demonstrator. In 32nd Congress of the International Council
of the Aeronautical Sciences, pages 1–16. ICAS, 2021.

[4] Brigitte Boden, Jan Flink, Robert Mischke, Kathrin Schaffert, Alexander Weinert, Annika Wohlan,
Caslav Ilic, Tobias Wunderlich, Carsten M. Liersch, Stefan Görtz, Erwin Moerland, and Pier Davide
Ciampa. Distributed Multidisciplinary Optimization and Collaborative Process Development Using
RCE. In AIAA Aviation 2019 Forum, 17–21 June 2019, Dallas, TX, USA. American Institute of
Aeronautics and Astronautics, 2019.

[5] A. Da Ronch, C. McFarlane, C. Beaverstock, J. Oppelstrup, M. Zhang, and A. Rizzi. Benchmarking
ceasiom software to predict flight control and flying qualities of the B-747. 27th Congress of the
International Council of the Aeronautical Sciences 2010, ICAS 2010, 4(September):2906–2912,
2010.

[6] Andre Deperrois. Xflr5.

[7] André Deperrois. Guidelines for XFLR5: Analysis of foils and wings operating at low Reynolds
numbers. Technical Report February, 2013.

[8] Mark Drela. Avl.

[9] Mark Drela. Xfoil.

[10] Quentin Arnaud Dugne-Hennequin, Hideaki Uchiyama, and João Paulo Silva Do Monte Lima. Un-
derstanding the behavior of data-driven inertial odometry with kinematics-mimicking deep neural
network. IEEE Access, 9:36589–36619, 2021.

[11] Alessandro Gastaldi and Aaron Dettmann. Pytornado.

[12] R. Jategaonkar and R.V. Jategaonkar. Flight Vehicle System Identification: A Time Domain
Methodology. Progress in astronautics and aeronautics. American Institute of Aeronautics and
Astronautics, 2006.

[13] R. Jategaonkar and R.V. Jategaonkar. Flight Vehicle System Identification: A Time Domain
Methodology. Progress in astronautics and aeronautics. American Institute of Aeronautics and
Astronautics, 2006.

[14] Joseph Katz and Allen Plotkin. Low-Speed Aerodynamics. Cambridge University Press, New York,
2nd edition, 2001.

[15] David Kinney. Using VSPAERO.

[16] David Kinney. VSPAERO. . . What’s New?, 2021.

[17] Thomas Klimmek. Parameterization of Topology and Geometry for the Multidisciplinary Optimiza-
tion of Wing Structures. page 9, 2009.

64

[18] Aditya Kotikalpudi, Brian P Danowsky, David K Schmidt, Christopher D Regan, and Abhineet
Gupta. Real-time shape estimation for a small flexible flying-wing aircraft. In AIAA Scitech 2019
Forum, page 1818, 2019.

[19] George Loubimov and Michael Kinzel. A novel approach to calculating induced drag from compu-
tational fluid dynamics. AIP Advances, 11(7), jul 2021.

[20] Leandro R Lustosa, Ilya Kolmanovsky, Carlos ES Cesnik, and Fabio Vetrano. Aided inertial esti-
mation of wing shape. Journal of Guidance, Control, and Dynamics, 44(2):210–219, 2021.

[21] RE Maine and KW Iliff. Agard flight test techniques series. volume 3. identification of dy-
namic systems-applications to aircraft. part 1. the output error approach. Technical report, AD-
VISORY GROUP FOR AEROSPACE RESEARCH AND DEVELOPMENT NEUILLY-SUR-SEINE
(FRANCE), 1986.

[22] Brian Maskew. Program VSAERO theory document. Nasa Cr-4023, 1987.

[23] Yasser M. Meddaikar, Johannes Dillinger, Thomas Klimmek, Wolf Krueger, Matthias Wuesten-
hagen, Thiemo M. Kier, Andreas Hermanutz, Mirko Hornung, Vladyslav Rozov, Christian Breit-
samter, James Alderman, Bela Takarics, and Balint Vanek. Aircraft aeroservoelastic modelling of
the FLEXOP unmanned flying demonstrator. In AIAA Scitech 2019 Forum. AIAA, jan 2019.

[24] Yasser M Meddaikar, Johannes Dillinger, Thomas Klimmek, Wolf Krueger, Matthias Wuesten-
hagen, Thiemo M Kier, Andreas Hermanutz, Mirko Hornung, Vladyslav Rozov, Christian Breit-
samter, et al. Aircraft aeroservoelastic modelling of the flexop unmanned flying demonstrator. In
AIAA scitech 2019 forum, page 1815, 2019.

[25] Tomas Melin. A vortex lattice matlab implementation for linear aerodynamic wing applications, 12
2000.

[26] Tomas Melin. Implementation of a vortex lattice method in a heterogeneous programming lan-
guage environment, 2018.

[27] J. Moran. An Introduction to Theoretical and Computational Aerodynamics. Dover Books on
Aeronautical Engineering. Dover Publications, 2003.

[28] Erik D. Olson and Cindy W. Albertson. Aircraft high-lift aerodynamic analysis using a surface-
vorticity solver. volume 0. American Institute of Aeronautics and Astronautics Inc, AIAA, 2016.

[29] OpenVSP. Software package, version 3.22.0, 2021.

[30] W F Phillips and D O Snyder. Modern Adaptation of Prandtl’s Classic Lifting-Line Theory. JOUR-
NAL OF AIRCRAFT, 37(4), 2000.

[31] Guy Revach, Nir Shlezinger, Xiaoyong Ni, Adria Lopez Escoriza, Ruud JG Van Sloun, and Yon-
ina C Eldar. Kalmannet: Neural network aided kalman filtering for partially known dynamics. IEEE
Transactions on Signal Processing, 70:1532–1547, 2022.

[32] Muhammad K Shereen, Muhammad I Khan, Naeem Khan, and Wasi Ullah. By the design and
implementation of modified kalman filter for lpv systems. International Journal of Engineering
Works, 3(4):26–31, 2016.

[33] João Paulo Silva do Monte Lima, Hideaki Uchiyama, and Rin-ichiro Taniguchi. End-to-end learning
framework for imu-based 6-dof odometry. Sensors, 19(17):3777, 2019.

[34] James C Sivells and Robert H Neelly. Method for calculating wing characteristics by lifting-line
theory using nonlinear section lift data. National Advisory Commitee for Aeronautics, (865):75–93,
1947.

FLIPASED D106 Data Analytics for Model Validation V01 y2022m11d17 65

[35] Jurij Sodja, Roeland De Breuker, Yasser M. Meddaikar, Johannes K. Dillinger, Keith Soal, Yves
Govers, Wolf Krueger, Panagiotis Georgopoulos, Christos Koimtzoglou, Christian Roessler, Se-
bastian J. Koeberle, Julius Bartasevicius, Daniel Teubl, Laszlo Gyulai, Szabolcs Toth, Mihaly Nagy,
Daniel Balogh, Miklos Jasdi, Péter Bauer, and Balint Vanek. Ground Testing of the FLEXOP
Demonstrator Aircraft.

[36] H.-J. Steiner. Preliminary design tool for propeller-wing aerodynamics part ii: Theory, 2010.

[37] Özge Süelözgen and Matthias Wüstenhagen. Operational modal analysis for simulated flight flutter
test of an unconventional aircraft. IFASD, The International Forum on Aeroelasticity and Structural
Dynamics, 9-13 June 2019, Savannah, Georgia, USA, 2019.

[38] Özge Süelözgen. A novel updating algorithm for linearized state-space models of an unmanned
flexible aircraft using flight test data. AIAA SCITECH 2022 Forum, 2022.

[39] Béla Takarics and Bálint Vanek. Robust control design for the flexop demonstrator aircraft via
tensor product models. Asian Journal of Control, 23(3):1290–1300, 2021.

[40] Béla Takarics, Bálint Vanek, Aditya Kotikalpudi, and Peter Seiler. Flight control oriented bottom-
up nonlinear modeling of aeroelastic vehicles. In 2018 IEEE aerospace conference, pages 1–10.
IEEE, 2018.

[41] H. Theil. Economic Forecasts and Policy. Contributions to economic analysis. North-Holland
Publishing Company, 1975.

[42] Matthias Wüstenhagen, Thiemo Kier, Yasser M Meddaikar, Manuel Pusch, Daniel Ossmann, and
Andreas Hermanutz. Aeroservoelastic modeling and analysis of a highly flexible flutter demonstra-
tor. In 2018 atmospheric flight mechanics conference, page 3150, 2018.

[43] M. Wüstenhagen, Ö. Süelözgen, L. Ackermann, and J. Bartaševicius. Validation and update of an
aeroservoelastic model based on flight test data. IEEE Aerospace Conference, 2021.

[44] Fanglin Yu, Julius Bartasevicius, and Mirko Hornung. Comparing potential flow solvers for aerody-
namic characteristics estimation of the t-flex uav. 2022.

[45] Ming Zhang, Mingming Zhang, Yiming Chen, and Mingyang Li. Imu data processing for inertial
aided navigation: A recurrent neural network based approach. In 2021 IEEE International Confer-
ence on Robotics and Automation (ICRA), pages 3992–3998. IEEE, 2021.

[46] Özge Süelözgen and Gertjan Looye. Application and Validation of a New Updating Algorithm for
Linearized State-Space Models of Flexible Aircrafts Using Flight Test Data, IFASD 2022-157.

FLIPASED D106 Data Analytics for Model Validation V01 y2022m11d17 66

	Executive Summary
	Overall Architecture and Tools to connect MDO and Testing
	Overall Architecture and Tools of MDO Toolchain
	CPACS
	RCE
	CPACS generation block
	Geometry block
	FE-model block
	Aero-model block
	Aeroelastic Model Generation and Simulation
	Baseline and Flutter Suppression Control Design Blocks

	Connection between MDO Toolchain and Testing

	Structural Dynamics Model Validation
	NASTRAN structural dynamic model
	Model-updating of the -0 wings
	Comparison of -1 aircraft structural dynamic model with static test
	Comparison of -1 aircraft structural dynamic model with GVTs
	Model-updating of the -1 wing
	Comparison of RCE aircraft model with static test and GVT
	Validation of the low order aeroservoelastic (ASE) model

	Aerodynamics Model Validation
	Aerodynamics modelling tools
	AVL
	Tornado
	PyTornado
	XFLR5
	VSPAERO
	PAWAT
	FlightStream
	STAR-CCM+

	Global aerodynamic coefficients
	Lift
	Drag
	Pitching moment

	Flight Dynamics Model Validation
	Updating algorithm
	Model Validation
	Theil’s inequality analysis and decomposition of fit error
	Model predictive capability

	Case Study
	Flight Test
	Results
	Proof-of-match
	Conclusion

	Control System Design and Performance Validation
	Baseline control structure
	Baseline control design
	Parameter Tuning

	Baseline control flight test results
	Augmented Mode Flight Tests
	Altitude Tracking and Autothrottle Tests
	Course Angle Flight Test
	Preparation for Flutter tests

	Validation of data driven wingshape estimation by analytic models
	T-FLEX demonstrator dynamic model
	Model based estimation of flexible dynamics
	LPV model
	LPV-based Kalman filtering

	Data-driven estimation of flexible dynamics
	KalmanNet architecture
	Training data
	Training details

	Results
	LPV-based EKF
	KalmanNet

	Data Driven vs. Model Based Estimation Conclusion

	Conclusion
	Bibliography

