BB Ref. Ares(2023)3777446 - 31/05/2023

U ol

PIIPASED

D2.6 Validation of data science based methods for modelling
and control

Balint Vanek, Bela Takarics, Bence Hadlaczky

GA number: 815058

Project acronym: FLIPASED

Project title: FLIGHT PHASE ADAPTIVE AEROSERVO-
ELASTIC AIRCRAFT DESIGN METHODS

Funding Scheme:H2020 ID: MG-3-1-2018

Latest version of Annex I: 1.1 released on 12/04/2019

Start date of project: 01/09/2019 Duration: 40 Months

Lead Beneficiary for this deliverable: SZTAKI

Last modified: 31/05/2023 Status: Delivered
Due date: 28/02/2023

Project co-ordinator name and organisation: Balint Vanek, SZTAKI
Tel. and email: +36 1 279 6113 vanek@sztaki.hu
Project website: www.flipased.eu

Dissemination Level
PU | Public X
CO | Confidential, only for members of the consortium (including the Commission Services)

“This document is part of a project that has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 815058.”

FITPASED

Glossary

ADAM Adaptive Moment Estimation

CNN Convolutional Neural Network

DOF Degree of Freedom

EKF Extended Kalman Filter

FEM Finite Element Method

GRU Gated Recurrent Unit

IMU Inertial Measurement Unit

LPV Linear Parameter Varying

ML Machine Learning

RelLU Rectified Linear Unit

RMSE Root Mean Squared Error

RNN Recurrent Neural Network

FITPASED
Table of contents

Executive Summary 5
Motivation for flexible dynamics estimation 6
T-Flexdynamicmodel 7

3.1 Nonlinear model e 7

3.2 LPVmodel e 8
Model-based wing shape estimation 9
Learning-based wing shape estimation 10

5.1 KalmanNet architecture 10

5.2 Training, validation and testdata 10

5.3 Trainingdetails 12

6 Results e e e 13
6.1 LPV-based EKF e 13

6.2 KalmanNet e 13
6.2.1 Neural network with linearlayers 13

6.2.2 Neural network with convolutional layers 13

6.3 RMSE metric-based comparison 15
Conclusion e e 18
Bibliography e 19

FITPASED
List of Figures
1 Demonstrator control surfaces and IMU locations 7
2 KalmanNet pipeline e 11
3 LPV-based EKF results e 14
4 Linear (left) and convolutional (right) RNN architecture training graphs 15
5 KalmanNet results with linear RNN architecture 16
6 KalmanNet results with convolutional RNN architecture 17

FITIPASED
1 Executive Summary

This report addresses the aspects of linear (parametrized) model approximation of dynamical systems,
in view of control design. The model-free, or data-based approaches and their application to the flight
data specific objectives will be described within the deliverable. In this work we are adopting big-
data techniques to analyze the vast data provided by the complex sensing and control system. These
methodologies are useful in mapping and revealing the underlying structure of the problem. Data
science technologies for optimal usage of these data are developed in FIIPASED, and recommendations
for methods and useful sensor arrangements for future aerospace applications are described.

The machine learning based approach results are presented through a flexible state estimation of the
wings of the T-Flex aircraft. The investigated methods are described along with the used state-space
model of the aircraft. The obtained results are presented and evaluated. Finally, conclusions are drawn.

FITIPASED
2 Motivation for flexible dynamics estimation

The dynamic behaviour, stability, and the effects of the aerodynamic drag of a large-wingspan aircraft
are mainly influenced by the structural flexibility and shape of its wings during flight. Large commercial
aircraft has large mass variation during flight, as fuel is consumed, hence optimal (minimum drag)
configuration at one point of the mission might not be optimal in other parts of the flight. Aircraft design
accounts for this change by simultaneously optimising the wing lift and drag for multiple points within
the flight, but the typical optimization relies on passive means with the assumption that flaps have to be
at zero deflection during the trimmed cruise phase of flight. On the other hand if a database (most likely
derived by CFD tools) is available about the optimal wing shape and the corresponding flap deflections,
leading to minimum drag at each point within the cruise flight envelope, significant reduction can be
achieved in terms of fuel consumption. For each individual point in the flight envelope the optimal
wingshape has to be achieved by an adequate wingshape controller, what might not only contain flap
scheduling but also setpoint tracking of the optimal modal coordinates of the wing.

Therefore, utilizing a wing shape controller that minimizes the effects of drag can greatly improve the
behaviour and fuel consumption of the aircraft. However, such a controller requires the measurement
of the dynamics of the wing, more precisely, the modal coordinates which describe the structural and
dynamic changes of the wing. For estimating the modal coordinates and reconstructing the wing shape
a state observer is necessary because the direct and accurate measurement of these states is not
feasible. Two approaches are investigated as possible solutions for the state estimation task. First,
Extended Kalman Filtering (EKF) is presented, using a Linear Parameter Varying (LPV) system model.
Second, a machine learning-based approach is introduced based on the new KalmanNet architecture
with two different recurrent neural network configurations: one with linear layers and one with one-
dimensional convolutional layers. The results are evaluated on the T-Flex aerial demonstrator aircraft
and compared using the LPV-based EKF as a reference.

FITIPASED
3 T-Flex dynamic model

This section will briefly present the dynamic model of the T-Flex used by the different state estimation
methods.

3.1 Nonlinear model

The model of the T-Flex aircraft is given as a nonlinear state-space system. A reduced order model
is used to decrease the computation burden. Details of the modelling and model order reduction are
given in the articles [3], [7], [8]. The system has 48 states. The state vector x € R*® consists of rigid
body states, states related to the flexible dynamics of the wing and aerodynamic lag states (denoted
as xgex), and finally, states that represent the control surface inputs and their first derivatives. The rigid
body motion is represented with a 6-DOF model with 12 states: states of translational (u, v, w) and
angular (p, g, r) velocities, position (x, y, z), and orientation (¢, 6, v). In the used state-space model
the states of the x and y positions were truncated because, under certain trim conditions, these can
cause unstable poles to appear, which caused poor performance during state estimation.

00 6
The flexible dynamics of the wing are described with w(x, t) = > ®;(x)Ugs(t) = > ®:i(x)Us(t), where
i=1 i=1

®;(x) denotes the i*" mode shape and Uy(t) the i™" modal coordinate. So xuex € R** contains the first
six modal coordinates (Ur1, Urn, Urs, Urs, Urs, Usg) their first derivatives (Ur1, Ura, Urs, Urs, Uss, Usg)
and two lag states (lag;, lag,). The reason for using only the first six modal coordinates in the model is
that these have the largest contribution in the description of the flexible behaviour of the wings [3]. The
objective of this research is the estimation of the x¢cy.

The sensors and control surfaces of the system are depicted in Figure 1. The system has 13 inputs,
u € R13, which contains one turbofan engine input (Throttle) and 12 control surface inputs: four plus
four ailerons (AileronR/L) on each wing and on the V-tail two plus two ‘ruddervators’ (TailR/L).

ailerons

y ruddervators

Figure 1: Demonstrator control surfaces and IMU locations

The output vector y € R% of the system has 23 rigid body-related sensors, which provide information
about the position (Xg, Yg, Zg), orientation (¢, 6, v), translational (vy, ve, vp) and angular velocity (p,
g, r), and acceleration (a,g, a,s, a,g) of the aircraft. Furthermore, the angle of attack («), sideslip angle
(5), static pressure (p,) and total pressure (pr), barometric altitude (hparo), indicated (vias) and the true
airspeed (vras) are measured as well. These sensors are located near the center of gravity (CoG) of
the fuselage, as well as at the nose air data boom. Each wing of the demonstrator has six plus six
additional inertial measurement units (IMUs). The IMUs of the leading-edge measure accelerations in
the x, y, and z directions, while the IMUs of the trailing edge provide angular velocity data around the

FITPASED

x- and y-axis, and acceleration data in the z direction. The exact location of the IMUs can be seen
in Figure 1 as well, the y axis of these sensors are aligned with the front and rear spar of the wing
respectively and hence they are not parallel with the body axes. In addition, the wingtip coordinates are
measured with a mono camera preventing acceleration-based estimation errors from diverging in time
[2]. The coordinates of four wingtip points are measured in each direction.

3.2 LPV model

In our work, we created a Linear Parameter Varying (LPV) approximation of the nonlinear model of
the T-Flex demonstrator [6]. It is essentially a point-wise linearization of the nonlinear state space
system. Different trim points are defined by the — so called — scheduling parameters, thus creating a
multidimensional grid. At each grid point the nonlinear system is linearized using the corresponding
trim conditions. Then the resulting linear, state-space model is assigned to that grid point. So as
the scheduling parameters change during simulation a linear model is selected from the LPV model
according to the current values of the scheduling parameters, thus providing a linear approximation of
the nonlinear system around that operating point. The higher the resolution of the multidimensional grid
of the scheduling parameters, the more accurately can the LPV model approximate the behaviour of
the nonlinear system. But as a drawback, a high resolution grid results in a large LPV model, which
makes its usage more computation heavy. As scheduling parameters (p € R?), the true airspeed (vras)
and the roll angle (¢) outputs were chosen. The grid for the LPV model consists of airspeed values
from 35 m/s to 55 m/s with a 0.1 m/s resolution and the roll angles from 0° to 45° with 1° resolution. The
state-space equations of the discrete-time LPV system are

x[k] = A(plk])x[k — 1] + B(p[k])ulk],
[kl = C(plk])x[k] + D(p[K])ulk],

where p[k] is the time-varying vector of the scheduling parameters at time step k, with a nominal sam-
pling time of 1/200sec. A(p[k]) € R*¥®*48 B(p[k]) € R*®*13 C(p[k]) € R®*5* and D(p[k]) € RO4*13
denotes the parameter-dependent state-space matrices of the LPV system. The state vector is de-
noted as x[k|, the input vector as u[k], while y[k] is the output vector of the system at time step k. The
main advantage of using an LPV model is that only linear algebraic operations are required to compute
the state and output evolutions of the system, instead of the computationally more challenging nonlinear
functions. Also by selecting the resolution of the grid of the scheduling parameters appropriately (with
sufficient but not overly high resolution), the LPV model requires less storage space than the nonlinear
model, while only providing minuscule differences in the state and observation trajectories compared to
the nonlinear model.

(1)

FITIPASED
4 Model-based wing shape estimation

Extended Kalman Filtering (EKF) is used as a model-based wing shape estimation approach. The EKF
is the extension of the standard Kalman filter to be used with nonlinear systems for state estimation
and sensor fusion. The EKF pipeline requires the full, nonlinear state-space description of the system
and information about the model noise and observation noise in the form of noise covariance matrices
(denoted as @ and R respectively). The discrete-time nonlinear state-space system is of the form:

x[k] = f(x[k — 1], u[k]) + w[k],
y[k] = h(x[K], u[K]) + v[K].

Here, the nonlinear function f(.) is called state-transition function, while h(.) is called state-observation
function. The w[k] € R* and v[k] € R® vectors are the model noise and observation noise vectors,
which are described by their covariance matrices Q@ € R***8 and R € R®**®* respectively. Both noise
processes are assumed to have 0 mean, normal distributions, and the noise samples at each time step
are mutually independent.

(2)

The general framework of the EKF consists of two main steps: prediction and update. In these steps,
point-wise linearization is used to approximate the behaviour of the nonlinear system: the Jacobians
of the nonlinear state-transition and state-observation functions are calculated to get the linear, state-
space matrices A[k|, B[k], C[k] and D[k] at each time step k. In the prediction step, the prior state
estimation is calculated using the inputs of the current time step and the estimations from the previous
time step with

R[k|k — 1] = f(R[k — 1|k — 1], u[K]). (3)
The prior state estimation covariance P € R**48 s
Plk|k — 1] = A[k]P[k — 1|k — 1]JA[K]" + Q. (4)
In the update step, first, the innovation
yIk] = ylk] = h(*[k|k — 1], u[K]) (5)
is calculated. Then the Kalman gain, Kg € R54>48
Kelk] = Plk|k — 1]C[k]" (C[k]P[K|k — 1]C[K]" + R)~*. (6)
With the help of the Kalman gain, the posterior state vector
X[k|k] = x[k|k — 1] + Kc[k]y[K], (7)
and state prediction covariance
Plk|k] = (I = K[k C[K]) P[k|k — 1] (8)
is computed.

To obtain a point-wise linearization we use the LPV model. During simulation, the true airspeed and
roll angle are used as the scheduling parameters in the LPV model and are measured at each time
step k. The resulting A[k], B[k], C[k] and D[k] matrices are used in the calculations of the EKF. Then
the EKF conducts the prediction and update steps. To determine Q, both the nonlinear and the LPV
models are simulated with doublet inputs on the control surfaces and then the measured outputs and
states are compared, and variances of the differences are calculated. The noise variances, R, of the
onboard sensors of the T-Flex are specified based on the datasheets of the sensors and using data
from previous flight tests [1].

ol

FITIPASED
5 Learning-based wing shape estimation

5.1 KalmanNet architecture

The other approach for estimating the flexible states of the T-Flex is to use machine learning. We employ
the recently published KalmanNet architecture [5]. The algorithm (or pipeline) for the KalmanNet is pre-
sented in Figure 2. KalmanNet combines Kalman filtering with a neural network as it uses similar predic-
tion and update steps, but without computing the state prediction covariance matrix (P). Consequently,
the model noise covariance matrix (Q) is not involved. For providing the Kalman gain (Step 4 in Fig-
ure 2), a trained Recurrent Neural Network (RNN) is used, thus the observation noise covariance matrix
(R) is not involved either. The neural network uses the innovation difference Ay[k] = y[k] — y[k|k — 1],
the forward update difference AX[k] = %[k — 1|k — 1] — X[k — 1|k — 2], and the roll angle ¢ scheduling
parameter as input features. The advantage of the KalmanNet compared to the EKF is that it does not
require any information about the model of the noise processes and the promise of better generalization
capabilities.

The standard Kalman gain predicting neural network [5] uses a Gated Recurrent Unit (GRU) as the
recurrent layer and linear layers with Rectified Linear Units (ReLU) as the activation function. The
neural network has a linear layer as the input layer with ReLU activation, followed by the GRU. After
the GRU layer, there is another linear layer with ReLU activation, then the linear output layer. As the
aircraft model we use is high-dimensional (48 states, 64 outputs), we slightly decreased the dimensions
of each layer compared to the original architecture to reduce the computation burden.

Apart from the linear RNN architecture, we implement a different neural network that still uses a GRU
cell, but instead of linear layers, it uses three convolutional blocks at the beginning of the network [9].
A convolutional block consists of a 1D convolutional layer followed by a ReLU activation function. After
the ReLU a Batch Normalization layer is used, followed by a Dropout layer with 0.25 dropout probability.
The output layer is a linear layer, which provides the Kalman gain matrix. The kernel size for each
1D convolution layer is seven. As the 1D convolutional layer requires a trajectory, or time-window of
input features, simply using the forward update difference (Ay/[k]), innovation difference (AX[k]) and roll
angle (¢) input features of the current time step is not adequate. Therefore, we use the input features of
the current time step and the input features from the previous 19 time steps in the time-window buffer.
In Figure 2, the architecture with the convolutional layers represents the neural network. The number
of features is shown below the convolutional blocks and the pool size below the max pooling layer. The
number of units is indicated underneath the GRU and the linear layer. The dropout rate is shown below
the dropout layer.

From here on — for the sake of brevity — the original KalmanNet architecture is referred to as the linear
RNN architecture, while the second, new architecture is referred to as the convolutional RNN architec-
ture after their defining layer types.

For initializing the layer weights, a standard normal distribution is used. Since the architecture incorpo-
rates a discrete-time system, it has a high sensitivity to the initial weight values. Therefore, the standard
deviation of the normal distribution for the initialization has to be chosen very small (5 - 107%) to avoid
the otherwise highly diverging training process.

5.2 Training, validation and test data

For training a neural network, generally three different datasets are required: training, validation, and
test datasets. The training dataset — as its name suggests — solely used for optimizing the weights

10

FITPASED
F EC EU
0. Select state-space matrices from 1. Prior state and output estimation 2. Forward update diff. & innovation
LPV model diff. feature calculation

ylkl = @, vras — Alk] B[k], C[k].DIk] | *[klk — 1] = A[k]&[k — 11k — 1] + Blkulk] _ AR[k] = R[k — 1]k — 1] — #[k — 1|k — 2]
Klk|k] = £k — 1|k — 1] Ylklk — 1] = Clk]&[k|k — 1] + D[kJulk] Aylk] = ylk] — Flklk —1]

| |

5. Innovation and posterior state 3. Update time window’
prediction calculation
§1k] = y[k] — $lklk — 1] {Ax[k —19] .. A%[k—1] Ax[k]}

Aylk —19] .. Aylk—1] Aylk
#lklk] = 2[klk — 1] + Kalklylk] s o o

4. Get Kalman gain from the neural network

time window = 20 samples

[20: 48+64+1]
. Convolutional I:l GRU I:l Dropout

[64: 48]

025 3800 3 2048 2048 2048] Max pooling [Linear

Figure 2: KalmanNet pipeline

and biases of the neural network. The validation set is used for testing the performance of the network
during training on new data samples. The purpose of this is to monitor the stability of the training,
to detect overfitting, and to fine tune hyperparameters. (Overfitting is the phenomenon when during
training the network is no longer capable of getting lower loss values while maintaining its generalization
capabilities and starts to memorize the training data, thus reaching smaller loss values on the training
set, but greater and greater losses on previously unseen datapoints.) The test dataset is only used
after the network is fully trained to obtain final performance metrics. The training, validation, and test
datasets are generated using the high-fidelity nonlinear Simulink model of the T-Flex.

The training dataset has four different trajectories that are generated with the help of the baseline
controller [4]. These four trajectories are the following:

e the oval-shaped ‘horserace’ track,
e an ‘8-shaped’ track,
¢ a trajectory where the controller only receives roll angle (¢,.r) reference signals,

¢ a trajectory where the controller receives altitude (h,.r) and velocity (V,.r) reference signals.

These four trajectories are created with the intention to cover as many possible real-life flight conditions
as we can in order to enhance the generalization capabilites of the neural networks. Also, to create rich
datasets, while having realistic flight conditions, randomized wind gust and turbulence disturbances are
used, together with Gaussian sensor noise, based on the flight test results of the T-Flex [1] for each
dataset. The other purpose of applying wind loads is to have disturbances that cannot be incorporated
into any covariance matrix. The trajectories of the training dataset are split into eight, 96-second long
batches. The sampling time is set to 5 ms, which results in 19200-sample long training batches. For
training, a single batch is randomly selected from the eight in each epoch. Validation and testing are
conducted using only a trajectory where the aircraft follows the ‘8-shaped’ track. The initial velocity is
set to 42 m/s in all cases. The possible range of airspeed changes is between 39 m/s and 51 m/s, for
the roll angle between 0° and 45°. The barometric altitude can change between 780 m and 820 m.

11

FITPASED
Architecture Linear RNN | Convolutional RNN
Learning rate | 3.2-107° 75.107°
Weight decay | 1.5-10~" 9.5-107°

Table 1: Hyperparameters

5.3 Training details

The quality of training and the performance of the neural network is influenced to a great extent by
hyperparameters (e.g. learning rate, weight decay/L2 regularization factor). The hyperparameters of
the neural network, contrary to the weights and biases (simply called parameters) of the network, can
not be learned during training using the gradient-based optimization algorithm. The values of the hy-
perparameters have to be specified before the start of the training procedure via hyperparameter tuning
algorithms. (During training, it is possible though to fine tune the hyperparameters using the validation
metrics.) For the two neural network architectures, these are set with a custom-made hyperparameter
optimization algorithm based on RayTune. The hyperparameter optimization has 20 runs, each last-
ing for 25 epochs. The hyperparameter optimization uses the same pipeline and same training and
validation datasets as standard training runs. The optimized hyperparameters are presented in Table 1.

The gradient-based optimizer algorithm is ADAM for both architectures. To avoid overfitting, weight
decay is used. The prediction error is calculated with Root Mean Squared Error (RMSE) function.
However, although the linearized aircraft model is a stable system, the poles of the system are relatively
close to the unstable region. So, a stability criterion is added to the loss function. It is possible to
describe the complex system of the aircraft model joined with the Kalman filter with an error system
e[k + 1] = (A[k] — Kg[k]C[k])e[k], where K[k] is the Kalman gain, e[k] = x[k] — X[k|k] is the state
prediction difference at time step k. If the state transition matrix of the error system (A[k] — K¢ [k]C[k])
has any unstable poles, then the whole system is unstable. Hence, the RMSE loss is extended with the
distance of the error system poles from the boundary of stability if it is greater than zero, thus making
the loss value larger if the computed Kalman gain results in an unstable error system. This is especially
useful for the convergence of the training.

An error metric is defined in decibels as RMSE 45 = 10 Ig(RMSE), for the sake of convenience during
plotting, because the freshly initialized network tends to produce greater errors. This metric is solely
used for evaluation and plotting. For optimizing the network weights, the standard RMSE loss value is
used during backpropagation.

It is important to mention that the performance of the linear RNN architecture proved to be more stable
than the convolutional RNN, which tends to get stuck in local optima. So, to overcome this issue, a
reduction of the learning rate during training (called learning rate scheduling) is necessary in that case.
The threshold is set at —21 dB — according to the decibel-based error metric — and the reduction factor

is 0.05. The new learning rate is calculated as Ir"*" = factor - Ir°'¢.

12

ol

FITIPASED
6 Results

The performance of the different methods and architectures are evaluated on the 96-second long test
dataset, where the aircraft follows the ‘8-shaped’ track with wind and turbulence disturbances present.
Since the main purpose of the state estimator design is to observe the states describing the flexible
dynamics, only the results for these states are presented. The data with the nonlinear label is the
ground truth. These show the real behaviour of the flexible states of the nonlinear model. The data
having the EKF and the KNet labels are the results of the state estimation provided by the LPV-based
EKF and the KalmanNet architectures respectively.

6.1 LPV-based EKF

The results of the LPV-EKF state predictions are shown in Figure 3. This method is capable of ac-
curately predicting most of the states. However, it has a tendency to provide estimations with heavier
noise in the case of the derivative states. This excess of noise is because the flight trajectories contain
disturbances caused by wind and turbulence. These disturbances do not exert their effect in the form
of additive noise like the observation noise or model noise. Also their statistical characteristics cannot
be incorporated into neither the model nor the observation noise model, since wind conditions are not
known accurately before flight and they tend to change as well. Apart from the effects of wind, minor
errors occur during turning manoeuvres in state lag;. The reason is that the LPV model is still just an
approximation of the real, nonlinear system thus it is incapable of providing completely similar behaviour
as the nonlinear model. However, these inaccuracies are inside the error tolerance for this problem.

6.2 KalmanNet

6.2.1 Neural network with linear layers

First, the slightly modified original KalmanNet architecture of [5] — which uses linear layers with the
GRU — is trained and evaluated. The training run had 300 epochs. Using an Nvidia Tesla V100 GPU
with 32GBs of RAM, the whole procedure took 25 hours. The summary of the training is presented in
Figure 4 (left). The decibel-based metric is used for the plotting.

The trained model is evaluated on the same dataset as the LPV-based EKF. The results are shown in
Figure 5. It can be seen that the performance of the linear RNN architecture is comparable to the EKF.
In the case of the derivative states it even manages to proved more accurate predictions for Url, U2,
and Ur4. However, the estimation of Us3 and U5 still proves to be challenging. Also in the prediction
of lag; a similar error is present as in the EKF. Only here it is between 40 s — 60 s, where the aircraft
conducts a climb from 782 m to 803 m with heavier acceleration.

6.2.2 Neural network with convolutional layers

Second, the proposed network architecture with convolutional layers is implemented, trained and eval-
uated. In this case, the training had 100 epochs that took 15 hours to complete using the V100 GPU.
The 1D convolution expects a time series as an input, and the 20-sample long time window is used,
which equals to 0.1 s trajectory with the 5 ms sampling time. Unfortunately, it was not possible to use
a larger window size, as we ran out of GPU memory after a few training epochs (and training with CPU
was not feasible, due to its slow execution speed). The training graph is shown in Figure 4 (right) with
loss values in decibels.

Testing is done with the same dataset as in the previous approaches. The results are presented in Fig-

13

SED

PASE

FITPA
—— nonlinear --- EKF
| 7] 0.02f | :
0.1 Urr |
Ur>
0.01 |- B
0
0
—-0.1
| | |
T T T 0.005 F T T ™
0.005 =
0
0 ~0.005 |
Urs
—0.005 |- U | —001))
| | | | | |
T T T 0001 B T T \7
0.005 |- Uss |
0
0
—0.001 |- Uss f
—0.005 -
l l . 1—0.002 \- l l =
05F T T = T T T

—0.02

—0.02

la
—0.02 &2

30 60 90
time [s] time [s]

Figure 3: LPV-based EKF results

FLIPASED_D206_ValidationOfDataScienceBasedMethodsForModellingAndControl_V01_y2023m05d08

D

EU

14

. A
FIIPASED

RMSE Loss [dB] - per Epoch MSE Loss [dB] - per Epoch
~— KNet - Train -7.5
—— KNet - Validation

—— KNet - Test

-— KNet - Train
—— KNet - Validation

-10.0 —— KNet - Test

-12.5
-15.0

-17.5

RMSE Loss Value [dB]
i
o

MSE Loss Value [dB]

-20.0

oLy
-22.5
0 50 100 150 200 250 300 0 20

40 60
Number of Training Epochs Number of Training Epochs

80 100

Figure 4: Linear (left) and convolutional (right) RNN architecture training graphs

Architecture | LPV-EKF | Linear RNN | Convolutional RNN
Total RMSE 0.0120 0.0053 0.0066

Ur,, RMSE 591.10~% | 8.82-10~* 9.79-10~*

Us, RMSE 0.0183 0.0080 0.0100

lag, RMSE | 6.95-10~* 0.0014 0.0014

Table 2: Prediction errors

ure 6. The convolutional RNN architecture manages to give very similar predictions as the LPV-based
filter and the linear RNN. In the case of lag, there are still larger errors present however, the prediction
error in the 40 s — 60 s interval is smaller than for linear RNN architecture (Figure 5). Unfortunately,
neither this architecture is capable of providing perfect estimations for the derivative states.

6.3 RMSE metric-based comparison

In Table 2 the prediction errors are presented in the RMSE metric used throughout the training of the
neural networks. Based on this metric, the performance of the two learning-based approaches are
better than the LPV-based EKF: having only half the total error value. When looking at the three dif-
ferent state groups (modal coordinates, derivatives of the modal coordinates, aerodynamic lag states)
the followings can be observed. When estimating the modal coordinates, all three architectures provide
similar performance. For the lag states the LPV-based EKF provides better performance than either
architecture. In the case of the derivative states, where the accurate estimation of the states is a rather
challenging task because of the significant level of disturbance, the learning-based methods fare much
better than the LPV-based EKF. However, as discussed during the time domain analysis of results, this
does not mean that any of the architectures can completely negate the effects of the disturbances.
Comparing the two neural network architecture the linear RNN has slightly better performance as met-
rics concerned. However, it took significantly less time to train the convolutional RNN while it also used
less GPU memory and the size of trained model is smaller than for the linear RNN.

15

FITPASED

PASED.EU

—— nonlinear --- KNet
‘ ‘ 0.02 |- ‘ -
0.1 Urr |
Ur>
0.01 |- =
0
0
—-0.1
| | |
T T 0.005 F T T W
0.005 =
0
0 ~0.005 |
Ura
—0.005| Urs —0.01 |- s
| | | | |
T T 0001 T T \7
0.005 | Us |
0
0
—0.001 | Uss s
—0.005 -
l . 1—0.002 I l l =
T T 0.04 T T ™
0.4} =
0.2 -
0
—-02¢ . =
04| Un
| |
T T
0.02
o
—0.02}f —0.05 |- Urs |
| | |
0.04 T T T
0.05 | i :
0.02 i
ol 0
—0.02 —0.05 |- Ure]
—0.04 | | |
T T T
0.02
0
0
—0.02 |-
la
~0.02 &
—0.04 |- | | =
0 30 60 90
time [s] time [s]

Figure 5: KalmanNet results with linear RNN architecture

FLIPASED_D206_ValidationOfDataScienceBasedMethodsForModellingAndControl_V01_y2023m05d08

FITPASED
—— nonlinear --- KNet
‘ ‘ 0.02 |- ‘ -
0.1 Urr |
Ur>
0.01 |- =
0
0
—-0.1
| | |
T T T 0.005 F T T ™
0.005 =
0
0 ~0.005 |
Ura
—0.005| Us | —0.01 | s
| | | | | |
T T T 0001 T T \7
0.005 |- Uss
0
0
—0.001 |- Uss f
—0.005 -
l l . 1—0.002 I l l =
T T T - T T =
oal 7 0.04
0.2
—-0.2
-04
0.02
—0.02

0.02

—0.02

0.02

la
~0.02 &
| | —0.04 b l ! =
0 30 60 90 0 30 60 90
time [s] time [s]

Figure 6: KalmanNet results with convolutional RNN architecture

FLIPASED_D206_ValidationOfDataScienceBasedMethodsForModellingAndControl_V01_y2023m05d08 17

FIIPASED
7 Conclusion

For the flexible state estimation of the T-Flex a model-based approchs and a machine learning-based
approach are proposed. The model-based approach uses an LPV-based EKF, while the machine
learning-based solution utilizes the KalmanNet architecture with two different neural network setups.
The behavior of the different architectures are explained. The data generation an the training proce-
dure for the learning-based solutions are described. The results of the state estimation approaches
using different techniques are presented and their performances are compared.

18

FITIPASED
8 Bibliography

[1] Julius Bartasevicius, Sebastian J Koeberle, Daniel Teubl, Christian Roessler, and Mirko Hornung.
Flight testing of 65kg t-flex subscale demonstrator. In 32nd Congress of the International Council of
the Aeronautical Sciences, pages 1—16. ICAS, 2021.

[2] Leandro R Lustosa, llya Kolmanovsky, Carlos ES Cesnik, and Fabio Vetrano. Aided inertial estima-
tion of wing shape. Journal of Guidance, Control, and Dynamics, 44(2):210-219, 2021.

[3] Yasser M Meddaikar, Johannes Dillinger, Thomas Klimmek, Wolf Krueger, Matthias Wuestenhagen,
Thiemo M Kier, Andreas Hermanutz, Mirko Hornung, Vladyslav Rozov, Christian Breitsamter, et al.
Aircraft aeroservoelastic modelling of the flexop unmanned flying demonstrator. In AIAA scitech
2019 forum, page 1815, 2019.

[4] Daniel Ossmann, Tamas Luspay, and Balint Vanek. Baseline flight control system design for an
unmanned flutter demonstrator. In 2019 IEEE Aerospace Conference, pages 1-10. IEEE, 2019.

[5] Guy Revach, Nir Shlezinger, Xiaoyong Ni, Adria Lopez Escoriza, Ruud JG Van Sloun, and Yon-
ina C Eldar. Kalmannet: Neural network aided kalman filtering for partially known dynamics. /EEE
Transactions on Signal Processing, 70:1532—1547, 2022.

[6] Béla Takarics and Balint Vanek. Robust control design for the flexop demonstrator aircraft via tensor
product models. Asian Journal of Control, 23(3):1290-1300, 2021.

[7] Béla Takarics, Balint Vanek, Aditya Kotikalpudi, and Peter Seiler. Flight control oriented bottom-up
nonlinear modeling of aeroelastic vehicles. In 2018 IEEE aerospace conference, pages 1-10. IEEE,
2018.

[8] Matthias Wistenhagen, Thiemo Kier, Yasser M Meddaikar, Manuel Pusch, Daniel Ossmann, and
Andreas Hermanutz. Aeroservoelastic modeling and analysis of a highly flexible flutter demonstra-
tor. In 2018 atmospheric flight mechanics conference, page 3150, 2018.

[9] Ming Zhang, Mingming Zhang, Yiming Chen, and Mingyang Li. Imu data processing for inertial aided
navigation: A recurrent neural network based approach. In 2021 IEEE International Conference on
Robotics and Automation (ICRA), pages 3992-3998. IEEE, 2021.

19

	Executive Summary
	Motivation for flexible dynamics estimation
	T-Flex dynamic model
	Nonlinear model
	LPV model

	Model-based wing shape estimation
	Learning-based wing shape estimation
	KalmanNet architecture
	Training, validation and test data
	Training details

	Results
	LPV-based EKF
	KalmanNet
	Neural network with linear layers
	Neural network with convolutional layers

	RMSE metric-based comparison

	Conclusion
	Bibliography

